Читаем Принцесса или тигр? полностью

— Верно, — согласился Мак-Каллох. — Но только все это пустые рассуждения, пока я не сумел найти число Н. Вполне возможно, что моя машина просто не способна решить задачу о своей собственной «выживаемости», то есть, я хочу сказать, что, быть может, такого числа Н вообще не существует. А может, это я не способен найти такое число. Вот эту то проблему, джентльмены, я и хотел бы обсудить вместе с вами.

— Ну что ж, — сказал Фергюссон, — прежде всего мы должны знать, по каким правилам работает данная машина.

— Всего в ней используется 25 правил, — начал было Мак-Каллох. — Первые два из них — те же самые, что и в моей первой машине.

— Минуточку, — прервал его Фергюссон. — Вы хотите сказать, что машина вашего приятеля подчиняется правилам 1 и 2?

— Вот именно, — ответил Мак-Каллох.

— Тогда мне все ясно, — заявил Фергюссон. — Ни одна машина, в которой действуют правила 1 и 2, не может решить задачу о своей собственной «выживаемости».

— Как же вы сумели так быстро об этом догадаться? — спросил Крейг.

— Я уже сталкивался с подобного рода вещами, — объяснил Фергюссон. — Не так давно в моей работе возникла аналогичная проблема.

И все же, как именно Фергюссон определил, что машина, подчиняющаяся правилам 1 и 2, не может решить задачу о своей собственной «выживаемости»?

Решения

1. Напомним, что число 3223 порождает число 23223, а число 23223 в свою очередь порождает число 3223. Значит, у нас есть два числа, 3223 и 23223, которые порождают друг друга. Отсюда следует, что оба они вечны: ведь если ввести в машину одно из них, то получится второе, а если ввести второе, то получится первое. Ясно, что такой процесс бесконечен.


2. Возьмем два любых числа X и Y. Мы будем говорить, что число X приводит к числу Y, если X порождает Y, или если X порождает какое-то число, которое порождает Y, или если X порождает какое-то число, которое порождает другое число, которое в свою очередь порождает Y, и т. д. Иначе говоря, если, введя в машину число X, мы на каком-то этапе нашего процесса получим число Y, то будем говорить, что число X приводит к числу Y. Так, например, число 22222278 приводит к числу 78 фактически на шестом этапе. В более общем виде: если число Т представляет собой произвольную цепочку двоек, то для любого числа X число ТХ в конце концов приводит к X.

Далее, число 32223 не порождает самое себя, но приводит к самому себе, потому что оно порождает число 2232223, которое порождает затем число 232223, а это число в свою очередь вновь порождает 32223. Но раз число 32223 приводит к самому себе, то, стало быть, оно должно быть вечным.

Читатель, по-видимому, уже обратил внимание на следующую закономерность: если число Т состоит целиком из одних двоек, то число ЗТЗ должно приводить к самому себе и, следовательно, будет вечным.


3. Мне известен только один способ решения этой задачи: доказать в общем виде, что если число Т состоит целиком из одних двоек, то число ЗТ32 вечно и, следовательно, частный его случай — число 3232 — тоже является вечным. Этот факт служит иллюстрацией некоторого еще более общего принципа, который используется нами в решении следующей задачи.

Предположим, что у нас имеется определенный класс чисел (неважно, конечный или бесконечный), причем такой, что каждое число из этого класса приводит к некоторому числу из этого же класса (либо к самому себе, либо к другому числу). Тогда все числа, входящие в этот класс, должны быть вечными.

Попробуем воспользоваться этим принципом применительно к нашей задаче. Рассмотрим класс чисел вида ЗТ32, где Т — произвольная цепочка двоек. Покажем, что число ЗТ32 должно приводить к другому числу из этого же класса.

Возьмем сначала число 3232. Оно порождает число 32232, то есть элемент того же класса. Теперь, что нам дает число 32232? Оно порождает число 2322232, которое в свою очередь порождает число 322232, то есть элемент того же класса. А что получается с числом 322232? Оно порождает число 223222232, которое порождает число 23222232, а оно в свою очередь дает нам число 3222232, так что мы опять возвращаемся в указанный класс. В более общем виде: для любой цепочки двоек Т число 32Т32 порождает число Т322Т32, которое приводит к числу 322Т32, опять представляющему собой элемент данного класса. Итак, все числа, входящие в указанный класс, являются вечными.


4. Число 32323 порождает число 3232323, которое порождает число 32323232323, а это последнее в свою очередь порождает число 3232323232323232323. Дальнейшая схема представляется очевидной: любое число, состоящее из повторенного несколько раз числа 32 с тройкой на конце, порождает другое число того же вида (только более длинное), причем все эти числа будут вечными.


Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии