б) Возьмем в качестве X
утверждение NP‒NRA‒NP‒NRA, а в качестве Y — утверждение NRA‒NP‒NRA (или же за X можно принять NPA‒NR‒NPA, а за Y — NR‒NPA‒NR‒NPA). Тогда, как читатель может убедиться сам, X утверждает недоказуемость Y, а Y утверждает неопровержимость X. Если X опровержимо, то X ложно; тогда Y доказуемо и, значит, Y истинно, откуда следует, что X неопровержимо. Следовательно, X неопровержимо и, кроме того, Y истинно. Если же X ложно, то X ложно и неопровержимо. Если, наконец, X истинно, то Y недоказуемо; поэтому в данном случае Y будет истинным и недоказуемым.Обсуждение. По аналогии предположим, что на нашем острове, где живут рыцари и плуты, имеются еще два обитателя X
и Y, причем X заявляет, будто Y — признанный рыцарь, а Y утверждает, что X — отъявленный плут. Единственный вывод, который можно сделать, — это что один из них (мы не знаем, кто именно) должен оказаться либо непризнанным рыцарем, либо неотъявленным плутом. Точно такая же ситуация будет иметь место, если X станет утверждать, что Y непризнанный рыцарь, а Y заявит, что X — неотъявленный плут.
6.
ПоложимW
= NPA‒P‒R‒R‒NPA,Z
= R‒W, откуда Z = R‒NPA‒P‒R‒R‒NPA,Y
= R‒Z, откуда Y = R‒R‒NPA‒P‒R‒R‒NPA,X
= P‒Y, откуда X = P‒R‒R‒NPA‒P‒R‒R‒NPA.Тогда X
утверждает доказуемость Y, Y утверждает опровержимость Z, Z утверждает опровержимость W, a W утверждает недоказуемость X (действительно, W утверждает недоказуемость ассоциата выражения P‒R‒R‒NPA, которым является само высказывание X).Если W
опровержимо, то W ложно; поэтому X доказуемо и, значит, истинно; следовательно, Y доказуемо, а значит, истинно; стало быть, Z опровержимо, а потому ложно. Отсюда сразу следует, что W неопровержимо. Итак, W не может быть опровержимым; значит, W является неопровержимым, и, следовательно, Z будет ложным.Далее, если W
ложно, то W ложно, но неопровержимо. Предположим, что W истинно; тогда X недоказуемо. Если X истинно, то X истинно и недоказуемо. Предположим теперь, что X ложно; тогда Y недоказуемо. Если Y истинно, то Y истинно, но недоказуемо. Предположим, наконец, что Y ложно; тогда Z неопровержимо. Итак, в данном случае Z ложно, но неопровержимо.Приведенное рассуждение показывает, что либо W
ложно и неопровержимо, либо X истинно и недоказуемо, либо Y истинно и недоказуемо, либо Z ложно и неопровержимо.
7.
Эта задача фактически представляет собой просто записанный в других обозначениях вариант задачи 1 данной главы!Мы знаем, что число 32983 в первой машине Мак-Каллоха порождает число 9832983. Следовательно, по условию Мс1
утверждение 832983 истинно в том и только том случае, если утверждение 9832983 доказуемо. Кроме того, по условию Мс2; утверждение 9832983 истинно в том и только том случае, если утверждение 832983 не является истинным. Итак, сопоставляя эти два факта, мы получаем, что утверждение 9832983 истинно в том и только том случае, если оно недоказуемо. Значит, решением является число 9832983.Если мы сравним эту задачу с задачей 1, то увидим, что цифра 9 играет здесь роль N
, цифра 8 соответствует символу P, цифра 3 соответствует А, а цифра 2 играет роль тире. В самом деле, если мы заменим символы P, N, А, — соответствующими цифрами 8, 9, 3, 2, то утверждение NPA‒NPA (которое является решением задачи 1) трансформируется в число 9832983 (то есть в решение данной задачи!)
8.
Прежде всего отметим, что третья машина Мак-Каллоха также подчиняется закону Мак-Каллоха, который гласит, что для любого числа А всегда найдется некое число X, которое порождает число АХ. Доказывается это следующим образом. Из гл. 13 мы знаем, что существует число Н, а имении число 5464, такое что для любого X число Н2Н2 порождает число Х2X2. (Вспомним также, что число Н2Н2 в данной ситуации порождает само себя; впрочем, к нашей задаче это никакого отношения не имеет.) И теперь произвольное число А и положим X = Н2АН2), Тогда число X порождает число АН2АН2, которое и есть АХ. Таким образом, X порождает АХ. Итак, для любого числа А число X, порождающее число АХ, — это есть число 54642A54642.Пусть нам требуется найти такое X,
которое порождало бы 98X. Предположим, что это X действительно порождает число 98X. Тогда утверждение 8X истинно в том и только том случае, если утверждение 98X доказуемо (согласно условию Мс1); поэтому утверждение 98X истинно в том и только том случае, если утверждение 98X недоказуемо (согласно условию Мс2). Значит, утверждение 98X является истинным, но недоказуемым в данной системе (поскольку система правильна).Теперь, если в качестве А мы возьмем число 98, то увидим, что числом X,
порождающим 98X, является число 546429854642, Поэтому утверждение 98546429854642 истинно, но недоказуемо в данной системе.