Читаем Принцесса или тигр? полностью

Предположим теперь, что X допускает распечатку. Тогда утверждение X окажется истинным, а это будет означать, что утверждение Y допускает распечатку. Но тогда Y окажется истинным, откуда будет следовать, что X распечатки не допускает. Тем самым мы приходим к противоречию, поскольку в данном случае X оказывается одновременно и допускающим, и не допускающим распечатку; следовательно, утверждение X не может быть напечатано. Далее, раз X не допускает распечатки, а Y как раз это и утверждает, то, стало быть, утверждение Y является истинным. Таким образом, мы имеем:

(1) X не допускает распечатки;

(2) Y истинно.

Наконец, утверждение X может быть либо истинным, либо ложным. Если X истинно, тогда, согласно (1), X истинно, но не допускает распечатки. Если же X ложно, тогда Y не допускает распечатки, поскольку само X говорит нам о том, что Y допускает распечатку. Значит, в данном случае Y истинно — согласно (2) — и не допускает распечатки. Итак, либо X, либо Y истинно и не допускает распечатки — однако определить, какое именно из этих двух выражений истинно и не допускает распечатки, оказывается невозможно.

Обсуждение. Описанная ситуация аналогична следующей ситуации, возникшей на острове рыцарей и плутов: пусть на острове имеются два обитателя X и Y, причем X утверждает, что Y — признанный рыцарь, а Y утверждает, что X — непризнанный рыцарь. Единственное заключение, которое мы можем сделать — это, что один из них является непризнанным рыцарем, но кто именно, сказать невозможно.

Подобная ситуация рассматривается в последней главе моей книги «Как же называется эта книга?» в разделе «Дважды гёделевы острова», к которому мы и отсылаем читателя.


3. Положим Z = PA‒P‒NP‒РА.

Далее, положим Y = NP‒Z (то есть Y = NP‒РА‒P‒NP‒РА).

Положим, наконец, X = P‒Y (то есть X = P‒NP‒PA‒P‒NP‒PA).

Из этих выражений сразу ясно: X утверждает, что Y допускает распечатку, а Y говорит нам о том, что Z не допускает распечатки. Что же касается Z, то оно утверждает, что допускает распечатку ассоциат утверждения P‒NP‒РА; но ассоциат P‒NP‒РА есть утверждение P‒NP‒РА‒P‒NP‒РА, которое в свою очередь и есть X! Итак, Z утверждает, что X допускает распечатку.

Таким образом, X утверждает, что Y допускает распечатку, Y утверждает, что Z не допускает распечатки, a Z утверждает, что распечатку допускает X. Посмотрим теперь, что же из этого следует.

Предположим, что Z допускает распечатку. Тогда Z истинно, откуда следует, что X допускает распечатку, а значит, является истинным; это в свою очередь означает, что Y допускает распечатку и, следовательно, является истинным. Если же Y истинно, то, стало быть, Z не должно допускать распечатки. Таким образом, мы приходим к противоречию: если Z допускает распечатку, то оно ее не допускает. Значит, Z не допускает распечатки, и поэтому Y является истинным. Итак, нам известно, что:

(1) Z не допускает распечатки;

(2) Y истинно.

Далее, X может быть либо истинным, либо ложным. Предположим, что X истинно. Если Z ложно, то тогда X не допускает распечатки, а это означает, что X истинно, но не допускает распечатки. Если же Z истинно, то тогда, поскольку, согласно (1), оно не допускает распечатки, Z истинно, но не допускает распечатки. Итак, если X истинно, то либо X, либо Z истинно, но не допускает распечатки. Если же X ложно, тогда Y не допускает распечатки и, следовательно, Y истинно — согласно (2) — и не допускает распечатки.

Итак: если X истинно, то по крайней мере одно из двух утверждений X и Z является истинным, но не допускающим распечатки. Если же X ложно, то истинным, но не допускающим распечатки, оказывается утверждение Y.


4. Пусть S есть утверждение вида RA‒RA. Оно говорит нам о том, что ассоциат выражения RA (а ассоциат RA есть само S!) является опровержимым; следовательно, S истинно в том и только том случае, когда S опровержимо. Поскольку S не может быть одновременно и истинным и опровержимым, значит оно ложно, но неопровержимо.


5. а) Выберем в качестве X утверждение P‒RA‒P‒RA, а в качестве Y — утверждение RA‒P‒RA. Ясно, что X утверждает доказуемость Y, а Y утверждает опровержимость ассоциата выражения P‒RA (ассоциат P‒RA есть в данном случае просто само X). Итак, X утверждает, что Y доказуемо, а Y утверждает, что X опровержимо. (Другой вариант решения — принять за X утверждение РА‒R‒РА, а за Y — утверждение R‒РА‒R‒РА.)

Далее, если Y доказуемо, то Y истинно, откуда следует, что X опровержимо и, следовательно, ложно, что в свою очередь означает, что Y недоказуемо. Таким образом, допущение о доказуемости Y приводит нас к противоречию; стало быть, оно неверно, и Y недоказуемо. Если же Y недоказуемо, то X ложно. Итак, мы имеем:

(1) X ложно;

(2) Y недоказуемо.

Теперь если Y истинно, то Y истинно и недоказуемо. Если же Y ложно, то X неопровержимо (поскольку Y утверждает опровержимость X), и поэтому в данном случае X ложно, но неопровержимо. Следовательно, либо Y истинно, но недоказуемо, либо X ложно, но неопровержимо.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии