Читаем «Принцы» и «нищие» в царстве минералов полностью

Частицы размером менее 1 мм уже не могут обогащаться гравитационными методами. Земное притяжение для таких частиц слишком незначительно, и они очень медленно опускаются в водной среде. Здесь вступают в действие другие силы — поверхностные, власть которых увеличивается с уменьшением размеров частиц и, следовательно, с увеличением их удельной поверхности (приходящейся на единицу массы).

Обогащение в струе воды по плотности было известно давно. Промывка в желобах, на шлюзах из бараньих шкур, отсадка на решете — все эти способы мало изменялись на протяжении более чем тысячелетнего существования, вплоть до XIX в.

Когда проблема обогащения руд стала весьма актуальной, начали искать научное объяснение и пути совершенствования этих процессов. Француз Пернолэ в 1851 г. открыл законы падения рудных частиц в воде. Затем Борн описал их движения в восходящей струе воды. Узатис, Иордан, Спара, Риттингер, Ричардс, а за ними советские ученые Г. О. Чечотт и П. В. Лященко создали научные основы гравитационного обогащения полезных ископаемых.

В 50—60-х годах были проведены фундаментальные работы, основанные на принципах классической механики, по изучению процессов отсадки и других гравитационных методов обогащения (И. М. Верховский, В. И. Классен, Н. Н. Виноградов, Э. Э. Рафалес-Ламарка, Б. В. Кизевальтер, В. Н. Шохин, Г. Д. Краснов и др.). Зарождение процесса обогащения в тяжелых средах связано с именем Е. А. Слепцова, предложившего его в 1926 г. применительно к углю.

В последние годы заметно расширилась область применения гравитационных методов обогащения и увеличилась номенклатура используемого оборудования. Гравитационный процесс — основной для обогащения угля. Многие руды редких и драгоценных металлов успешно обогащаются гравитационными методами. Эти методы, как более дешевые, применяют для предварительной концентрации полезного ископаемого в цветной металлургии и при обогащении горно-химического сырья.

Судьба золушки

При всей необходимости, полезности и эффективности угля необходимо отметить один существенный его недостаток: это одно из самых «грязных» в экологическом смысле полезных ископаемых. Угольные карьеры, романтически названные в одной популярной брошюре как «недра, открытые солнцу», представляют собой многокилометровые язвы на теле Земли, как и отвалы вскрышных пород, образующие пресловутые терриконы. Но это еще полбеды.

Отходы обогащения (хвостохранилища) и сжигания угля (золоотвалы) представляют собой пылящие, смердящие и самовозгорающиеся участки, на которых ничто не растет и никто не живет. Кроме того, при сгорании угля в атмосферу выбрасывается значительное количество окислов углерода, серы, азота, всего 0,5 т пылегазовых выбросов с каждой тонны угля. А добыча всего 1 т угля дает свыше 3 т отходов.

В последние годы перед угольной и топливно-энергетической отраслями промышленности остро встали вопросы создания безотходных технологий: рекультивации отвалов, утилизации хвостов обогащения и золы, пылеулавливания, переработки газов ТЭЦ, переработки угля на жидкое топливо.

Выяснилось, что практически все вредные компоненты, образующиеся при добыче, переработке и сжигании угля, могут быть использованы. Особенно цепными являются компоненты внешней и внутренней золы.

Золы различных углей отличаются по своему составу. Некоторые из них содержат значительные промышленные количества рассеянных элементов. Например, это один из основных источников германия. В других золах имеются галлий, молибден, бериллий. Почти все золы содержат значительное количество алюминия. Правда, так называемый кремниевый модуль (отношение Al2O3/SiO2) низок, но для получения кремнеалюминиевых сплавов они вполне пригодны. Такая установка сооружается в Экибастузе.

Отходы углеобогащения и зола после сжигания еще содержат 8—10 % углерода. Поэтому производство стройматериалов, требующих обжига, возможно из этих отходов без затрат дополнительного топлива. Уже работают заводы по производству кирпича и аглопорита.

В углях содержится сера двух видов: в органической части горючей массы и в виде сульфида железа — пирита. Пирит может извлекаться из угля методами обогащения — в этом случае пирит может быть использован для производства серной кислоты, а железистый пиритный огарок применяется как добавка в цемент. Чтобы не допустить сгорания серы с углем, отчего образуется сернистый газ низкой концентрации и поэтому сложно утилизируемый, большую часть серы можно извлекать из угля с помощью специальных бактерий. Этот процесс еще не вышел из стадии опытно-промышленных исследований, но весьма перспективен.

Резко уменьшается количество вредных отходов сжигания при переработке угля в жидкое топливо. Технология этого процесса известна давно, и даже существуют природные аналоги. Вот что опубликовала газета «Социалистическая индустрия» 16 августа 1986 г.

Перейти на страницу:

Похожие книги

По программе ПОЛИМОДЕ в Бермудском треугольнике
По программе ПОЛИМОДЕ в Бермудском треугольнике

Проблемы окружающей среды — наиболее остро стоящие научные проблемы нашей современности. К ним относятся и некоторые аспекты океанографической науки. С целью изучения и освоения Мирового океана сейчас непрерывно проводятся сложные специализированные океанографические эксперименты, значительная часть которых носит международный характер. В 1978 году автор этой книги принял участие в крупнейшем океанографическом эксперименте ПОЛИМОДЕ, главной задачей которого было изучение «погоды в океане», которая, как оказалось, имеет большое значение для формирования погоды вообще.Автор знакомит читателя с океанографическими проблемами, исследование которых легло в основу программы ПОЛИМОДЕ, ходом выполнения задач во время 27–го рейса научно — исследовательского судна «Академик Курчатов».На страницах книги рассказывается о путешествии из Европы к берегам Америки и обратно. Читателю любопытно будет узнать о малознакомых Канарских и Бермудских островах, о Саргассовом море — море без берегов, об ураганах, зарождающихся в этой области океана, а также о таинственном Бермудском треугольнике, в акватории которого проходило большинство экспериментов по программе ПОЛИМОДЕ.

Эмил Василев Станев

Геология и география / Прочая научная литература / Образование и наука