Читаем Природа и общество. Модели катастроф полностью

Этот закон, установленный опытами Стефана, был затем выведен Больцманом из основных принципов термодинамики и является одним из самых важных законов природы. Он постоянно применяется в астрофизике, и нет никаких сомнений в его применимости к Земле. (Напомним, что имеется в виду Земля без атмосферы, а не бо'льшая система, состоящая из Земли вместе с ее атмосферой). Поясним на примере, какие выводы следуют из закона Стефана – Больцмана в применении к Земле. Предположим, что Земля перешла в другое состояние, с температурой поверхности T' = T + ΔT; спрашивается, как изменится мощность ее излучения W? Или, обратно, пусть известно, насколько изменилось излучение W ; спрашивается, как изменится температура? На эти вопросы можно дать однозначный и совершенно бесспорный ответ. При температуре T' излучаемая мощность W' равна

W' = CT'4,

с тем же универсальным множителем C. Деля это соотношение на предыдущее, получаем

или, полагая T' = T + ΔT, W' = W + ΔW,

Если изменение температуры ?T мало по сравнению с T, то можно, вычислив степень справа, отбросить высшие степени малой величины ΔT/T ; тогда имеем

или

Пусть теперь известно, что излучение Земли – по любым причинам – изменилось на 1%, то есть ΔW/W = 0,01. Насколько изменится температура земной поверхности T?. Из предыдущей формулы =0,0025, и полагая T = 300°, имеем ΔT = 0,75°, так что температура Земли изменится примерно на один градус.

Парниковые газы. Инфракрасное излучение Земли уходит в космос через атмосферу. Молекулы газов, составляющих атмосферу, могут рассеивать это излучение, в конечном счете возвращая часть его обратно на Землю. Примечательным образом, главные составляющие земной атмосферы – двухатомные молекулы азота N2, кислорода O2 и одноатомные молекулы аргона Ar – не ответственны за этот процесс. Это весьма малые молекулы, по сравнению с длиной волны инфракрасного излучения, а столь малые молекулы почти не задерживают длинноволнового излучения. Если бы атмосфера состояла только из этих главных газов, то она свободно пропускала бы излучение Земли. Препятствие для этого излучения составляют большие молекулы таких газов, как углекислый газ CO2, метан CH4 и некоторые другие, о которых еще будет речь. Несмотря на небольшое содержание этих газов в атмосфере, они перехватывают (вместе с облаками) почти 90% длинноволнового излучения Земли и отсылают обратно на Землю значительную его часть. В конечном счете, после повторного отражения газовыми молекулами, большая часть излучения Земли прорывается в космос. Но все же определенная часть его задерживается "парниковыми газами", и поскольку оптические свойства всех газов известны, то можно вычислить, какую часть излучения не выпускают в космос эти газы.

Если эта часть излучения возрастает на ΔW, вследствие промышленного выброса "парниковых газов", то это добавочное излучение возвращается на Землю. Тогда полное излучение, падающее на Землю, увеличивается на ΔW, а следовательно, по закону сохранения энергии, на столько же возрастает излучение Земли. Но тогда возрастает и температура земной поверхности, и ее приращение ΔT можно вычислить по закону Стефана – Больцмана, как мы видели выше. Таким образом, если известно, как изменился состав атмосферы, то строгие методы физики позволяют вычислить вызванное этим изменение температуры.

"Парниковый эффект" – вовсе не новое явление, связанное с технической деятельностью человека; это явление существовало всегда. Можно подсчитать, что если бы вообще не было парниковых газов, то средняя температура Земли была бы не +20° C, как сейчас, а –18° C и скорее всего, при такой температуре не могла бы возникнуть жизнь. Таким образом, сам по себе "парниковый эффект" благотворен; опасно его быстрое нарастание, наблюдаемое с 1750го года – с начала "технической революции".

Важнейшим из "парниковых газов" является углекислый газ CO2, который один ответственен за 60% "парникового эффекта". Содержание CO2 в атмосфере тщательно изучено исследованием воздуха, извлеченного из глубинных слоев антарктического льда. Оказалось, что с конца последнего ледникового периода (около 10000 лет назад) до 1750-го года это содержание было почти неизменно, а после этого возрастало по отчетливому экспоненциальному закону, как это видно из рисунка 7. В начале технической революции концентрация CO2 составляла, по объему, 280 миллионных атмосферного воздуха, а теперь – 360 миллионных, то есть выросла на 30%. Тот же закон подтверждается современными измерениями, выполненными на десятках независимых обсерваторий. Например, на рисунке 8 изображен рост концентрации CO2 в течение последних десятилетий, по данным обсерватории Мауна-Лоа на Гавайских островах. Поскольку на этих островах нет никакой промышленности, эти данные должны быть близки к средним величинам, образующимся путем перемешивания во всей атмосфере Земли

Рис.7

Изменение концентрации CO2 в атмосфере начиная примерно с 1750 года по данным анализа глубинного льда ледника Siple в западной Антарктиде.

Рис.8

Перейти на страницу:

Похожие книги

Тайны осиного гнезда. Причудливый мир самых недооцененных насекомых
Тайны осиного гнезда. Причудливый мир самых недооцененных насекомых

Осы – удивительные существа, которые демонстрируют социальное поведение и когнитивные способности, намного превосходящие других насекомых, в частности пчел – ведь осы летали и добывали пищу за 100 миллионов лет до того, как появились пчелы! В книге видного британского энтомолога Сейриан Самнер рассказывается о захватывающем разнообразии мира ос, их видов и функций, о важных этапах их эволюции, о поведении и среде обитания, о жизни одиночных ос-охотников и о колонии ос как о суперорганизме. Вы познакомитесь с историей изучения ос, ролью ос как индикаторов состояния окружающей среды, биоразнообразия экосистем и загрязнения сред обитания, с реакцией популяций ос на возрастающую урбанизацию и прогнозом того, как будет выглядеть наша планета, если на ней исчезнут осы. Узнав больше о жизни этих насекомых, имеющих фундаментальное значение для экологического баланса планеты, можно узнать больше о нас самих и о жизни на Земле.«Осы – одна из самых таинственных и обделенных вниманием жемчужин природы. Бесконечное множество их форм демонстрирует нам одно из самых непредсказуемых и впечатляющих достижений эволюции. Их жизнь тесно переплетена с жизнью других насекомых, а также грибов, бактерий, растений, почвы, экосистем и даже нас с вами. Цель этой книги – усадить ос за почетный стол природы и превратить жуткое отвращение, которое испытывают люди к осам, в восхищение и уважение, каких осы заслуживают». (Сейриан Самнер)В формате PDF A4 сохранён издательский дизайн.

Сейриан Самнер

Экология / Зарубежная образовательная литература / Образование и наука
Все лучшее, что не купишь за деньги
Все лучшее, что не купишь за деньги

Жак Фреско рисует образ глобальной цивилизации, в которой достижения науки и техники применяются с учетом нужд человека и экологии с целью обезопасить, защитить и обеспечить существование более гуманного мира для всех людей и содействовать его процветанию. Эта книга предлагает возможный выход из циклично повторяющихся экономических подъемов и рецессий, голода, бедности, ухудшения состояния окружающей среды и территориальных конфликтов, где мир — просто пауза между войнами. В общих чертах книга представляет реальный гуманный социальный дизайн цивилизации ближайшего будущего, в которой права человека будут не просто декларированы на бумаге, а станут образом жизни. Книга «Все лучшее, что не купишь за деньги» — это призыв ко всем нам строить общество, в котором все глобальные ресурсы станут общечеловеческим наследием.

Жак Фреско , Роксана Медоуз

Философия / Экология / Прочая научная литература / Образование и наука