149 [Фейнман Р., Лейтон С., Сэндс М. Фейнмановские лекции по физике / Пер. А. Ефремов, Г. Копылов, Ю. Симонов, Олег Хрусталев. Вып. 3. М.: Мир, 1965. Гл. 37.]
150 Аналогия Фейнмана приблизительна, как и любые другие аналогии; при более пристальном рассмотрении она оказывается вовсе не такой ясной, как представляется на первый взгляд. Пули могут сталкиваться друг с другом до попадания на детектор, что неизбежно изменит характер распределения. И если пули, по размеру сравнимые с электронами, будут рикошетировать от краев крошечного экрана, они (в отличие от настоящих пуль) будут испытывать на себе и передавать экрану изменения в кинетической энергии, что, в свою очередь, воздействует на характер распределения и на дальнейшее взаимодействие между летящим электроном и экраном. И, наконец, противопоставление, проводимое Фейнманом между пулями и водяными волнами, – это чистая риторика. Когда мы растворяем любой вид материи, мы в итоге получаем атомы или поля. Поскольку и то и другое квантуется, мы никогда не можем получить непрерывную волновую картину.
151 С 1888 по 1973 год Физический институт находился в самом центре города, и физикам, работавшим с электронными микроскопами высокого разрешения и электронными интерферометрами, во второй половине ХХ века приходилось находить пути преодоления механических и магнитных возмущений, возникавших вследствие особенностей городской жизни. В 1973 году институт переехал в новое помещение, располагавшееся на вершине холма за пределами города. Точно так же как астрономы стремятся устанавливать свои телескопы подальше от яркого света цивилизации, так и Молленштедт хотел, чтобы его институт находился как можно дальше от источников электромагнитных возмущений.
152 Его поиск проходил следующим образом: в качестве временного субстрата он использовал стеклянную пластину 4 × 4 см, покрытую тонким (20 нм) слоем серебра, нанесенного с помощью испарения. Она обладала достаточной толщиной для гальванопокрытия меди на слой фольги толщиной в 0,5 мкм. Но как проделать небольшие щели в фольге? Поначалу он хотел процарапать их с помощью предназначенного для этого инструмента, как это делалось при производстве светооптических интерференционных решеток. Однако такого инструмента у него под рукой не было, да и процарапывание с его помощью щелей длиной всего лишь в 0,5 мкм представлялось крайне сложным делом (названная длина была необходима, чтобы фольга оставалась механически стабильной). И вот именно тогда и пригодились старые эксперименты Йонссона с гальванопокрытием. Вспомнив, что микроскопическое количество загрязнений на субстрате мешает увеличению слоя гальванопокрытия, он до начала процесса гальванопокрытия сделал на серебряном субстрате изолирующие слои в форме щелей. А здесь пригодился еще один девиз Молленштедта: если вы обнаружили в ходе эксперимента некий эффект, связанный с загрязнениями, постарайтесь сделать так, чтобы он работал на вас. Йонссон обнаружил, что в его экспериментах действительно имеет место эффект, связанный с загрязнениями, в форме так называемых слоев Стюарда, возникающих из-за конденсации молекул масла из масляных паров внутри электронного микроскопа. Молекулы масла «разбивались» электронным лучом и, полимеризируясь, создавали слой Стюарда. Чем больше экспериментатор смотрел на некий объект, тем толще становился слой Стюарда, снижая контрастность образа. Йонссон экспериментировал со слоями Стюарда и обнаружил, что они обладают великолепными изолирующими характеристиками, предотвращая гальванопокрытие меди в тех местах на серебряном субстрате, где они конденсируются. Выражаю огромную благодарность Клаусу Йонссону за помощь в объяснении особенностей подготовки этих экспериментов.