Но появился Эйнштейн со своим фотоэффектом. Мы уже относительно подробно рассказывали об этом в предыдущих лекциях, но не грех вкратце напомнить. Если направить свет на специальный материал (фотопластинку), то он будет выбивает из нее электроны. Казалось бы, чем ярче будем светить на пластинку, тем быстрее оттуда будут электроны вылетать. Чем ярче свет, чем он интенсивнее, чем больше его амплитуда, тем выше будет скорость выбиваемых электронов — снова вспомним про мощную такую морскую волну.
В реальности все оказалось не так. Чем выше была яркость света, тем больше выбивалось электронов. А скорость их вылета была одинакова. Хоть обставь всю лабораторию прожекторами. Стоило же изменить длину световой волны, то электроны неожиданно меняли скорость. Если взять самую длинную волну видимого света — красный свет — то тогда электроны вообще переставали вылетать. Какого, спрашивалось, лешего? Это была засада. И эту загадку разгадал Эйнштейн. За что ему дали нобелевку, хотя кому-то хотелось дать ему по щщам: все испортил и открыл ящик Пандоры.
В это время, снова напомним, некий Макс Планк показал мужикам смешную шутку. Он на досуге рассчитывал, как излучает тепло «сферический конь в вакууме» — абсолютно черное тело. Если считать по формулам Максвелла, то в итоге насчитывалась бесконечная энергия — у нас, между прочим, местные энергетики и работники тепловых сетей так же, похоже, считают. А Планк взял и придумал удачную формулу, чтобы подогнать расчет под ответ. Никогда такого не было, и вот опять. Ох уж эти ученые: вечно выдумывают, подгоняют результаты, а потом награждают друг друга и выписывают гранты.
В общем, получалось, что тепло идет не бесконечным потоком, а кусками — их назвали квантами тепла. Ну как в интернете — пакеты летят, так и тут, тепло кусками вылезает из сферического коня в вакууме. И Планк попросил Альберта заценить шутку, мол, гляди: кванты какие-то, дискретность, математические абстракции… Эйнштейн же юмора не понял, а взял и применил идейку к волне света. И спросил себя, а потом и остальных, что если световая волна тоже излучается порциями. Эту порцию он назвал квантом света (позже — фотоном). Фотоны в некоторых случаях вели себя как частицы. Кончилась история тем, что Планк обиделся на Эйнштейна и до конца жизни клал на квантовую теорию интерферометр.
А вот дальше началось то, от чего сам Эйнштейн испытал знатное удивление и в итоге тоже на всех обиделся. Как дядюшка Альберт объяснил фотоэффект? Легко и по-пацански! Один квант света выбивает ровно один электрон. Как частица частицу. Поэтому увеличиваем интенсивность света: летит больше фотонов, выбивается больше электронов. Энергия выбивания всё та же. Но если мы меняем фотону цвет, то электроны вылетают с иными скоростями. Беда в том, что цвет фотона описывается волновыми свойствами, а именно: длиной волны и частотой. Получалось, что энергия этого самого фотона зашифрована в цвете фотона, то есть в частоте. Если цвет красный, то фотоны просто не в силах выбить электроны из фотопластинки — вся их энергия уходит на преодоления так называемой «энергии связи» — электроны же не так просто выдернуть из материала, они там как бы закреплены. И нужно потратить какие-то силы, чтобы их выбить. А если свет голубой, то электроны выбиваются и даже летят быстрее всех. Еще раз, чтобы не перечитывать: энергия фотона зависит от его цвета, а не амплитуды, а цвет — это волновая характеристика. Частица имеет свойство волны.
Все это было неприятно. Давайте нарисуем интерферометр глазами Эйнштейна:
Здесь у нас происходит смена концепции. К зеркалам летит уже не волна, а кванты-фотоны-частицы. Пытающийся спасти положение классический доквантовый физик рассуждает так: фотоны летят до зеркала, далее случайным образом расщепляются на два пучка по половине фотонов в каждом, и в итоге после всех приключений эти пучки интерферируют. Странно, конечно, что частицы интерферируют как волны, но вот такая природа света. Давайте назовем это явление корпускулярно-волновым дуализмом и забудем обо всем этом недоразумении.
К несчастью теоретиков в проблему вмешались технологии.
Сначала более точный эксперимент показал, что как не меняй интенсивность света — интерференционная картинка не меняется. А должна бы, если интенсивность — это энергия. Полоски не становились шире или ярче. Интенсивность света влияла только на скорость проявления картинки на экране. Если запускать фотоны малыми порциями всего-то по паре сотен миллиардов за раз, то картинка на экране будет постепенно становиться всё четче и четче. А если выстрелить добрым куском из пары тысяч триллионов фотонов, то сразу получится отличная фоточка.
Как мы сказали выше, физики, включая Эйнштейна, по-прежнему говорили, ну и что, фотоны из первого пучка интерферируют с фотонами из второго пучка. Допустим, только допустим, что энергия не зависит от интенсивности — ну и, ладушки. Мы выдумали термин «корпускулярно волновой дуализм» — пользуйтесь.