Читаем Проблемы Гильберта (100 лет спустя) полностью

Как же быть с отрицательными рациональными числами и нулём? Так же как с космозоологами и филателистами в бесконечной гостинице. Пронумеруем Q+ не всеми натуральными числами, а только чётными (давая им номера не 1, 2, 3, ..., а 2, 4, 6, ...), нулю присвоим номер 1, а всем отрицательным рациональным числам присвоим (по такой же схеме, что и положительным) нечётные номера, начиная с 3.

Теперь все рациональные числа занумерованы натуральными, следовательно, Q счётно.

Возникает естественный вопрос:

Может быть, все бесконечные множества счётны?

- 11 -

Оказалось, что R — множество всех точек на числовой прямой — несчётно. Этот результат, полученный Кантором в прошлом веке, произвёл очень сильное впечатление на математиков.

Докажем этот факт так же, как это сделал Кантор: с помощью диагонального процесса.

Как мы знаем, каждое действительное число х можно записать в виде десятичной дроби:

х = А, α1 α2 ... αn ...,

где А — целое число, не обязательно положительное, a α1, α2, ... αn, ... — цифры (от 0 до 9). Это представление неоднозначно: например,

1/2 = 0,50000... = 0,49999...

(в одном варианте записи, начиная со второй цифры после запятой, идут одни нули, а в другом — одни девятки). Чтобы запись была однозначной, мы в таких случаях всегда будем выбирать первый вариант. Тогда каждому числу соответствует ровно одна его десятичная запись.

Предположим теперь, что нам удалось пересчитать все действительные числа. Тогда их можно расположить по порядку:

х1 = А, α1 α2 α3 α4 ...

х2 = B, β1 β2 β3 β4 ...

х3 = С, γ1 γ2 γ3 γ4 ...

х4 = D, δ1 δ2 δ3 δ4 ...

………

Чтобы прийти к противоречию, построим такое число у, которое не сосчитано, т. е. не содержится в этой таблице.

Для любой цифры а определим цифру ̅а следующим образом:

- 12 -

Положим  (у этого числа к-я цифра после запятой равна 1 или 2, в зависимости от того, какая цифра стоит на к-м месте после запятой в десятичной записи  числа xk).

Например, если

х1 = 2,1345 ...

х2 = -3,4215 ...

х3 = 10,5146 …

х4 = -13,6781 …

………

То

Итак, с помощью диагонального процесса мы получили действительное число у, которое не совпадает ни с одним из чисел таблицы, ведь у отличается от каждого xk по крайней мере к-й цифрой десятичного разложения, а разным записям, как мы знаем, соответствуют различные числа.

Предположив, что можно пересчитать все действительные числа, мы пришли к противоречию, указав число, которое не сосчитано. Следовательно, множество R. несчётно.

Множества R. и N не являются эквивалентными, и NR, поэтому всех действительных чисел в некотором смысле «больше» чем натуральных. Говорят, что мощность множества R. (мощность континуума) больше чем мощность N.

<p>Континуум-гипотеза</p>

Теперь мы располагаем всеми необходимыми сведениями для того, чтобы сформулировать знаменитую первую проблему Гильберта:

Континуум-гипотеза. С точностью до эквивалентности, существуют только два типа бесконечных числовых множеств: счётное множество и континуум.

Иначе говоря, нужно установить, существует ли множество промежуточной мощности, т. е. такое множество Τ, N ⊂ Τ ⊂ R, которое не эквивалентно ни N, ни R.

- 13 -

Этой проблемой занимались очень многие математики. Сам Георг Кантор неоднократно заявлял, что доказал эту гипотезу, но всякий раз находил у себя ошибку.

<p>О ДОКАЗАТЕЛЬСТВАХ В МАТЕМАТИКЕ</p>

Математика — точная наука, требующая строгости рассуждений. Но что означает строго доказать какое-либо утверждение? Это означает вывести его из аксиом — исходных положений, принимаемых без доказательства.

Конечно, в выборе аксиом, которые закладываются в основу теории, есть некоторый произвол. Но обычно аксиомы возникают естественным путём, из познания действительности. В теории множеств, частью которой являются конструкции, описанные в предыдущих разделах, тоже имеется общепризнанная система аксиом Цермело—Френкеля.

Доказать континуум-гипотезу — значит, вывести её из этих аксиом. Опровергнуть её — значит, показать, что если её добавить к этой системе аксиом, то получится противоречивый набор утверждений.

<p>Решение проблемы</p>
Перейти на страницу:

Все книги серии Математическое просвещение

Похожие книги

Почему не иначе
Почему не иначе

Лев Васильевич Успенский — классик научно-познавательной литературы для детей и юношества, лингвист, переводчик, автор книг по занимательному языкознанию. «Слово о словах», «Загадки топонимики», «Ты и твое имя», «По закону буквы», «По дорогам и тропам языка»— многие из этих книг были написаны в 50-60-е годы XX века, однако они и по сей день не утратили своего значения. Перед вами одна из таких книг — «Почему не иначе?» Этимологический словарь школьника. Человеку мало понимать, что значит то или другое слово. Человек, кроме того, желает знать, почему оно значит именно это, а не что-нибудь совсем другое. Ему вынь да положь — как получило каждое слово свое значение, откуда оно взялось. Автор постарался включить в словарь как можно больше самых обыкновенных школьных слов: «парта» и «педагог», «зубрить» и «шпаргалка», «физика» и «химия». Вы узнаете о происхождении различных слов, познакомитесь с работой этимолога: с какими трудностями он встречается; к каким хитростям и уловкам прибегает при своей охоте за предками наших слов.

Лев Васильевич Успенский

Детская образовательная литература / Языкознание, иностранные языки / Словари / Книги Для Детей / Словари и Энциклопедии