И процесс возобновляется. Первый из вышедших из строя имеет номер 3, и он счастлив: он освобожден от наряда. Теперь рассчитываются по трое, начиная с 3 — с того, кто первым вышел из строя за нарядом…
Составьте программу, выписывающую
2 3 5 7 11 13 17 23 25 29
Счастливые числа — не обязательно простыв, а простые числа — не обязательно счастливые…
??? Головоломка 7. Дьявольская последовательность.
Марк Твен описал в своих рассказах жуткую историю. Человек прочел глупые стихи вроде
(Я цитирую по памяти, но дух соблюден.) Он был порабощен ритмом этих стихов, что стало настоящим наваждением. Если он начинал писать, его перо выводило «Режьте, братцы, режьте». Если он встречал кого-нибудь, он не здоровался с ним, а говорил «Режьте, братцы».
Он пробовал управлять собой, но это подрывало его здоровье. Он решил обратиться к своему священнику и объяснить ему, в чем дело, и читал ему это маленькое стихотворение, подчеркивая его ритм, пока пастор не выучил его наизусть. Ушел он исцеленный.
Но в воскресенье пастор начал проповедь словами «Режьте, братцы, режьте». Что бы ни было в гимне, который он запевал, слова были одни — «Режьте, братцы, режьте…» Его жизнь стала адом. Он не мог исцелиться, пока в один прекрасный день ему не удалось злодейски обучить этому стихотворению одного профессора университета…
Нижеследующее и есть «режьте, братцы, режьте». Оно преследует меня долгие годы. Я потерял массу времени на размышления о нем без сколько-нибудь значительного успеха. Но ничто меня не занимает в большей степени. Моя единственная надежда освободиться от него — это то, что вы им заинтересуетесь…
Последовательность определяется следующим образом: первый член этой последовательности есть произвольное нечетное число, отличное от единицы. Следующее за числом
З
Последовательность заканчивается, когда в ней встречается значение 1.
Вот последовательность, которую мы получим, исходя из 7:
7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
Нет никакой надежды, что вам удастся доказать, что для любого нечетного числа в качестве начального значения последовательность достигает единицы.
Но в высшей степени увлекательно составить эту крошечную программу и посмотреть, как она работает. Испытайте число 27 в качестве начального значения: вы получите очень длинную последовательность, среди элементов которой есть 9232. Если вы изучите ряды чисел, получаемые для начальных значений, взятых среди нечетных целых от 3 до 99, вы получите довольно много патологических последовательностей, не всегда сильно отличающихся. Все это очень смущает. Ни один специалист по теории чисел еще не смог Доказать, что такая последовательность принимает значение 1 для любого начального значения. Не больше известно и о том, почему некоторые из этих последовательностей — короткие, а другие — слишком длинные…
Эта программа замечательно иллюстрирует то, что называется «проблемой остановки». Существуют простейшие программы, относительно которых нет уверенности, что они остановятся…
Теперь, когда вы уже познакомились с этой последовательностью, получите предмет головоломки. Заметим сначала, что если
(З
Это вычеркивает некоторые члены предыдущей последовательности, не меняя проблемы остановки:
7 11 17 26 13 90 10 5 8 4 2 1
Вы можете пойти еще дальше в том же направлении, объединяя вместе все последовательные шаги, действующие по правилу (З
7 13 5 1
Это позволяет рассматривать обобщения задачи. Пусть