Читаем Программирование игр и головоломок полностью

Этот пример заимствован из [MJB]. Образуем числовую последовательность следующим образом:

— начальный элемент — произвольное натуральное число, кратное трем,

— за любым элементом последовательности следует число, равное сумме кубов всех цифр данного элемента.

Теорема. Любая такая последовательность становится (начиная с некоторого места) постоянной, равной 153.

Пример. Начнем с 33:

33

3³ + 3³ = 54

5³ + 4³ = 189

1³ + 8³ + 9³ = 1242

1³ + 2³ + 4³ + 2³ = 81

8³ + 1³ = 153

1³ + 5³ + З³ = 153

1³ + 5³ + З³ = 153

и теперь последовательность стала постоянной.

Используйте ваш компьютер для доказательства этой теоремы.

? Головоломка 13. Варианты.

Нелегко сказать, какую роль в предыдущей теореме играет то, что исходное число кратно трем. Но от вас не потребует чрезмерных усилий в общем случае, что два последовательных числа последовательности имеют равные остатки при делении их на 3. В последовательностях, которые мы стали изучать, все члены последовательности делятся на 3. Можно доказать также, что все члены последовательности, кроме, быть может, первого, делятся на 9.

Если взять натуральное число, не кратное трем, то все члены соответствующей последовательности будут иметь один и тот же остаток при делении на 3. Что, кроме этого, вы можете узнать о поведении этих последовательностей?

Если при переходе к следующему члену последовательности вы будете брать сумму квадратов цифр (вместо того, чтобы брать сумму кубов), то все будет не намного лучше. Можете ли вы доказать следующую теорему: каково бы ни было натуральное число, взятое в качестве первого элемента последовательности, эта последовательность содержит число, не превосходящее 4?

? Головоломка 14. Теорема 6174. Построим последовательность натуральных чисел следующим образом. Начальный элемент — натуральное число с четырьмя цифрами, которые не все равны между собой. Мы переходим от данного члена последовательности к следующему но такому правилу.

Пусть a, b, c, d — четыре цифры, представляющие десятичную запись данного числа. Расположим их в порядке убывания слева направо и получим первое число. Расположим их в обратном порядке и вычтем это второе числа из первого. Это и есть искомый следующий член последовательности.

Теорема. Эта последовательность для любого начального элемента становится (начиная с некоторого места) постоянной, равной 6174.

Пример. Начнем с 7815:

8751 − 1578 = 7173

7731 − 1377 = 6354

6543 − 3456 = 3087

8730 − 0378 = 8352

8532 − 2385 = 6174

6174 − 1467 = 6174

Используйте ваш компьютер для доказательства этой теоремы. Это окажется намного проще, чем в предыдущей головоломке, поскольку имеется всего лишь 9000 чисел с четырьмя цифрами, и нужно исследовать 9000 последовательностей. Но вы можете сделать число испытаний намного меньше этого…

?? Головоломка 15. Господин S и господин P[7].

Вот одна из наиболее классических арифметических головоломок. Выберем два натуральных числа, больших единицы, но меньших ста. Значение их суммы сообщено господину S, значение их произведения — господину P. Ни один из них не знает, какое число сообщено другому. Господин P звонит господину S по телефону.

P. Я не могу найти эти два числа.

S. Я знаю, что вам это и не удалось бы.

P. Ах, так… Но тогда я их знаю!

S. Ну, тогда и я тоже их знаю!

Рассуждение позволяет существенно видоизменить задачу, и даже более того — предъявить решение. Много ли их? Используйте ваш компьютер, чтобы их найти.

Простые числа

??** Головоломка 16. Чемпион головоломок.

На мой взгляд, наиболее замечательная арифметическая головоломка, над которой мне пришлось особенно долго работать и которая дала мне возможность получить некоторые удовлетворительные результаты, — это, конечно, проблема простых чисел. Пусть дано число n (конечно, нечетное) и достаточно большое; сказать, является ли оно простым и, если можно, дать его разложение на простые множители.

Если не предполагать, что n велико, то есть простой способ действовать: делить n на простые числа и смотреть, удается ли деление без остатка. Если да, то число составное и допускает разложение в произведение. Впрочем, при таком методе многие делители можно вообще не рассматривать. Если n есть произведение двух сомножителей p и q:

n = p * q,

то либо p = q, либо один из сомножителей больше другого, так что можно считать, что p — делитель, q — частное и pq. Поэтому будем делить n на последовательно возрастающие простые числа, для которых частное больше или равно делителю. Так как мы не располагаем таблицей простых чисел, то используем последовательность Делителей, которая заведомо содержит все простые числа, например, последовательность нечетных чисел или лучше целых чисел вида 6k ± 1.

Перейти на страницу:

Похожие книги

Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных
Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ
Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ

Эта книга представляет собой перевод третьего издания американского бестселлера Effective C++ и является руководством по грамотному использованию языка C++. Она поможет сделать ваши программы более понятными, простыми в сопровождении и эффективными. Помимо материала, описывающего общую стратегию проектирования, книга включает в себя главы по программированию с применением шаблонов и по управлению ресурсами, а также множество советов, которые позволят усовершенствовать ваши программы и сделать работу более интересной и творческой. Книга также включает новый материал по принципам обработки исключений, паттернам проектирования и библиотечным средствам.Издание ориентировано на программистов, знакомых с основами C++ и имеющих навыки его практического применения.

Скотт Майерс , Скотт Мейерс

Программирование, программы, базы данных / Программирование / Книги по IT