Читаем Программирование. Принципы и практика использования C++ Исправленное издание полностью

Прежде чем читать дальше, попробуйте выяснить, сколько ошибок вы можете найти в функции f()? В частности, какой из вызовов функции poor() может привести к краху программы?

На первый взгляд данный вызов выглядит отлично, но это именно тот вид кода, который приносит программистам бессонные ночи отладки и вызывает кошмары у инженеров по качеству.

1. Передается элемент неправильного типа (например, poor(&s0[0],s0.size()). Кроме того, вектор s0 может быть пустым, а в этом случае выражение &s0[0] является неверным.

2. Используется “магическая константа” (в данном случае правильная): poor(s1,10). И снова тип элемента неправильный.

3. Используется “магическая константа” (в данном случае неправильная): poor(s2,20).

4. Первый вызов poor(p1,1) правильный (в чем легко убедиться).

5. Передача нулевого указателя при втором вызове: poor(p1,1).

6. Вызов poor(q,max), возможно, правильный. Об этом трудно судить, глядя лишь на фрагмент кода. Для того чтобы выяснить, ссылается ли указатель q на массив, содержащий хотя бы max элементов, мы должны найти определения указателя q и переменной max и их значения при данном вызове.

В каждом из перечисленных вариантов ошибки были простыми. Мы не столкнулись с какими-либо скрытыми ошибками, связанными с алгоритмами и структурами данных. Проблема заключается в интерфейсе функции poor(), который предусматривает передачу массива по указателю и открывает возможности для появления массы ошибок. Кроме того, вы могли убедиться в том, насколько затрудняют анализ такие малопонятные имена, как p1 и s0. Тем не менее мнемонические, но неправильные имена могут породить еще более сложные проблемы.

Теоретически компилятор может выявить некоторые из этих ошибок (например, второй вызов poor(p1,1), где p1==0), но на практике мы избежали катастрофы в данном конкретном случае только потому, что компилятор предотвратил создание объектов абстрактного класса Shape. Однако эта ошибка никак не связана с плохим интерфейсом функции poor(), поэтому мы не должны расслабляться. В дальнейшем будем использовать вариант класса Shape, который не является абстрактным, так что избежать проблем с интерфейсом нам не удастся.

Как мы пришли к выводу, что вызов poor(&s0[0],s0.size()) является ошибкой. Адрес &s0[0] относится к первому элементу массива объектов класса Circle; он является значением указателя Circle*. Мы ожидаем аргумент типа Shape* и передаем указатель на объект класса, производного от класса Shape (в данном случае Circle*). Это вполне допустимо: нам необходимо такое преобразование, чтобы можно было обеспечить объектно-ориентированное программирование и доступ к объектам разных типов с помощью общего интерфейса (в данном случае с помощью класса Shape) (см. раздел 14.2). Однако функция poor() не просто использует переменную Shape* как указатель; она использует ее как массив, индексируя ее элементы.

for (int i = 0; i

Иначе говоря, она ищет элементы, начиная с ячеек &p[0], &p[1], &p[2] и т.д.

В терминах адресов ячеек памяти эти указатели находятся на расстоянии sizeof(Shape) друг от друга (см. раздел 17.3.1). К сожалению для модуля, вызывающего функцию poor(), значение sizeof(Circle) больше, чем sizeof(Shape), поэтому схему распределения памяти можно проиллюстрировать так.

Другими словами, функция poor() вызывает функцию draw() с указателем, ссылающимся в середину объекта класса Circle! Это скорее всего приведет к немедленной катастрофе (краху)!

  Вызов функции poor(s1,10) носит более коварный характер. Он использует “магическую константу”, поэтому сразу возникает подозрение, что могут возникнуть проблемы при сопровождении программы, но это более глубокая проблема. Единственная причина, по которой использование массива объектов класса Polygon сразу не привело к проблемам, которые мы обнаружили при использовании объектов класса Circle, заключается в том, что класс Polygon не добавляет члены класса к базовому классу Shape (в отличие от класса Circle; см. разделы 13.8 и 13.12), т.е. выполняется условие sizeof(Shape)==sizeof(Polygon) и — говоря более общо — класс Polygon имеет ту же самую схему распределения памяти, что и класс Shape. Иначе говоря, нам просто повезло, так как небольшое изменение определения класса Polygon приведет программу к краху. Итак, вызов poor(s1,10) работает, но его ошибка похожа на мину замедленного действия. Этот код категорически нельзя назвать качественным.

То, с чем мы столкнулись, является основанием для формулировки универсального правила, согласно которому из утверждения “класс D — это разновидность класс B” не следует, что “класс Container — это разновидность класса Container” (см. раздел 19.3.3). Рассмотрим пример.

Перейти на страницу:

Похожие книги

Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных