Читаем Программирование. Принципы и практика использования C++ Исправленное издание полностью

И все же этот тест не настолько систематический, насколько нам бы хотелось. Как-никак, мы просто выискали несколько последовательностей. Однако мы следовали некоторым правилам, которые часто полезны при работе с множествами значений; перечислим их.

• Пустое множество.

• Небольшие множества.

• Большие множества.

• Множества с экстремальным распределением.

• Множества, в конце которых происходит нечто интересное.

• Множества с дубликатами.

• Множества с четным и нечетным количеством элементов.

• Множества, сгенерированные с помощью случайных чисел.

Мы используем случайные последовательности просто для того, чтобы увидеть, повезет ли нам найти неожиданную ошибку. Этот подход носит слишком “лобовой” характер, но с точки зрения времени он очень экономный.

Почему мы рассматриваем четное и нечетное количество элементов? Дело в том, что многие алгоритмы разделяют входные последовательности на части, например на две половины, а программист может учесть только нечетное или только четное количество элементов. В принципе, если последовательность разделяется на части, то точка, в которой это происходит, становится концом подпоследовательности, а, как известно, многие ошибки возникают в конце последовательностей.

В целом мы ищем следующие условия.

• Экстремальные ситуации (большие или маленькие последовательности, странные распределения входных данных и т.п.).

• Граничные условия (все, что происходит в окрестности границы).

Реальный смысл этих понятий зависит от конкретной тестируемой программы.

<p id="AutBody_Root515"><strong>26.3.2.2. Схема простого теста</strong></p>

Существуют две категории тестов: тесты, которые должны пройти успешно (например, поиск значения, которое есть в последовательности), и тесты, которые должны завершиться неудачей (например, поиск значения в пустой последовательности). Создадим для каждой из приведенных выше последовательностей несколько успешных и неудачных тестов. Начнем с простейшего и наиболее очевидного теста, а затем станем его постепенно уточнять, пока не дойдем до уровня, приемлемого для функции binary_search.

int a[] = { 1,2,3,5,8,13,21 };

if (binary_search(a,a+sizeof(a)/sizeof(*a),1) == false) cout << " отказ";

if (binary_search(a,a+sizeof(a)/sizeof(*a),5) == false) cout << " отказ";

if (binary_search(a,a+sizeof(a)/sizeof(*a),8) == false) cout << " отказ";

if (binary_search(a,a+sizeof(a)/sizeof(*a),21) == false) cout << " отказ";

if (binary_search(a,a+sizeof(a)/sizeof(*a),–7) == true) cout << " отказ";

if (binary_search(a,a+sizeof(a)/sizeof(*a),4) == true) cout << " отказ";

if (binary_search(a,a+sizeof(a)/sizeof(*a),22) == true) cout << " отказ";

Это скучно и утомительно, но это всего лишь начало. На самом деле многие простые тесты — это не более чем длинные списки похожих вызовов. Положительной стороной этого наивного подхода является его чрезвычайная простота. Даже новичок в команде тестировщиков может добавить в этот набор свой вклад. Однако обычно мы поступаем лучше. Например, если в каком-то месте приведенного выше кода произойдет сбой, мы не сможем понять, где именно. Это просто невозможно определить. Поэтому фрагмент нужно переписать.

int a[] = { 1,2,3,5,8,13,21 };

if (binary_search(a,a+sizeof(a)/sizeof(*a),1) == false) cout << "1 отказ";

if (binary_search(a,a+sizeof(a)/sizeof(*a),5) == false) cout << "2 отказ";

if (binary_search(a,a+sizeof(a)/sizeof(*a),8) == false) cout << "3 отказ";

if (binary_search(a,a+sizeof(a)/sizeof(*a),21) == false) cout << "4 отказ";

if (binary_search(a,a+sizeof(a)/sizeof(*a),–7) == true) cout << "5 отказ";

if (binary_search(a,a+sizeof(a)/sizeof(*a),4) == true) cout << "6 отказ";

if (binary_search(a,a+sizeof(a)/sizeof(*a),22) == true) cout << "7 отказ";

Если вы представите себе десятки тестов, то почувствуете огромную разницу. При тестировании реальных систем мы часто должны проверить многие тысячи тестов, поэтому знать, какой из них закончился неудачей, очень важно.

Перейти на страницу:

Похожие книги

Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных