Читаем Программирование. Принципы и практика использования C++ Исправленное издание полностью

Как только мы идентифицировали входные и выходные данные, мы тут же оказываемся в ситуации, в которой уже побывали, тестируя binary_search(). Мы просто генерируем тесты с входными значениями (для явного и неявного ввода), чтобы увидеть, приводят ли они к желаемым результатам (явным и неявным). Тестируя функцию do_dependent(), мы могли бы начать с очень большого значения переменной val и отрицательного значения переменной val, чтобы увидеть, что произойдет. Было бы лучше, если бы массив vec оказался вектором, предусматривающим проверку диапазона (иначе мы можем очень просто сгенерировать действительно опасные ошибки). Конечно, мы могли бы поинтересоваться, что сказано об этом в документации, но плохие функции, подобные этой, редко сопровождаются полной и точной спецификацией, поэтому мы просто “сломаем” эту функцию (т.е. найдем ошибки) и начнем задавать вопросы о ее корректности. Часто такое сочетание тестирования и вопросов приводит к переделке функции.

<p id="AutBody_Root519"><strong>26.3.3.2. Управление ресурсами</strong></p>

Рассмотрим бессмысленную функцию.

void do_resources1(int a, int b, const char* s) // плохая функция

                           // неаккуратное использование ресурсов

{

  FILE* f = fopen(s,"r");    // открываем файл (стиль C)

  int* p = new int[a];       // выделяем память

  if (b<=0) throw Bad_arg(); // может генерировать исключение

  int* q = new int[b];       // выделяем еще немного памяти

  delete[] p;                // освобождаем память,

                             // на которую ссылается указатель p

}

Для того чтобы протестировать функцию do_resources1(), мы должны проверить, правильно ли распределены ресурсы, т.е. освобожден ли выделенный ресурс или передан другой функции.

Перечислим очевидные недостатки.

• Файл s не закрыт.

• Память, выделенная для указателя p, не освобождается, если b<=0 или если второй оператор new генерирует исключение.

• Память, выделенная для указателя q, не освобождается, если 0.

Кроме того, мы всегда должны рассматривать возможность того, что попытка открыть файл закончится неудачей. Для того чтобы получить этот неутешительный результат, мы намеренно использовали устаревший стиль программирования (функция fopen() — это стандартный способ открытия файла в языке C). Мы могли бы упростить работу тестировщиков, если бы просто написали следующий код:

void do_resources2(int a, int b, const char* s) // менее плохой код

{

  ifstream is(s);            // открываем файл

  vectorv1(a);          // создаем вектор (выделяем память)

  if (b<=0) throw Bad_arg(); // может генерировать исключение

  vector v2(b);         // создаем другой вектор (выделяем память)

}

  Теперь каждый ресурс принадлежит объекту и освобождается его деструктором. Иногда, чтобы выработать идеи для тестирования, полезно попытаться сделать функцию более простой и ясной. Общую стратегию решения задач управления ресурсами обеспечивает метод RAII (Resource Acquisition Is Initialization — получение ресурса есть инициализация), описанный в разделе 19.5.2.

  Отметим, что управление ресурсами не сводится к простой проверке, освобожден ли каждый выделенный фрагмент памяти. Иногда мы получаем ресурсы извне (например, как аргумент), а иногда сами передаем его какой-нибудь функции (как возвращаемое значение). В этих ситуациях довольно трудно понять, правильно ли распределятся ресурсы. Рассмотрим пример.

FILE* do_resources3(int a, int* p, const char* s) // плохая функция

                                   // неправильная передача ресурса

{

  FILE* f = fopen(s,"r");

  delete p;

  delete var;

  var = new int[27];

  return f;

}

Перейти на страницу:

Похожие книги

Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных