Читаем Программируем Arduino. Профессиональная работа со скетчами полностью

  Включает светодиод на одну секунду, затем выключает на одну секунду, и так много раз.

  Этот пример кода находится в свободном доступе.

*/

Далее идут два однострочных комментария. Они похожи на блочные комментарии, но в отличие от них начинаются с пары символов //. Эти комментарии описывают происходящее. В данном случае комментарий сообщает вам, что контакт с номером 13 — это тот самый контакт, которым мы собираемся управлять. Мы выбрали этот контакт, потому что на плате Arduino Uno он подключен к светодиоду L.

// На большинстве плат Arduino к контакту 13 подключен светодиод.

// Дадим ему имя:

int led = 13;

Следующая часть скетча — функция setup. Эта функция должна присутствовать в каждом скетче, и она выполняется всякий раз, когда происходит сброс платы Arduino, либо в результате (как сообщает комментарий) нажатия на кнопку сброса Reset, либо после подачи электропитания на плату.

// процедура setup выполняется один раз после нажатия на кнопку сброса

void setup(){

  // инициализировать контакт как цифровой выход

  pinMode(led, OUTPUT);

}

Структура этого текста может показаться немного странной тем, кто только начинает изучать программирование. Функция — это фрагмент программного кода, имеющий собственное имя (в данном случае setup). Пока просто используйте предыдущий текст как шаблон и помните, что скетч должен начинаться строкой void setup() {, за которой следуют необходимые команды, каждая в отдельной строке, завершающиеся точкой с запятой (;). Конец функции отмечается символом }.

В данном случае Arduino выполнит единственную команду pinMode(led, OUTPUT), которая настраивает контакт на работу в режиме выхода.

Далее следует основная часть скетча, функция loop.

По аналогии с функцией setup каждый скетч должен иметь функцию loop. Но в отличие от функции setup, которая выполняется только один раз после сброса, loop выполняется снова и снова. То есть как только будут выполнены все ее инструкции, она тут же запускается снова.

Функция loop включает светодиод, выполняя инструкцию digitalWrite(led, HIGH). Затем выполняется команда delay(1000), приостанавливающая скетч на 1 с. Значение 1000 здесь обозначает 1000 мс, или 1 с. После этого светодиод выключается, скетч приостанавливается еще на 1 с, и процесс повторяется.

// Процедура loop выполняется снова и снова, до бесконечности

void loop() {

  digitalWrite(led, HIGH);  // включить светодиод (HIGH — уровень напряжения)

  delay(1000);              // ждать 1 с

  digitalWrite(led, LOW);   // выключить светодиод, установив уровень напряжения LOW

  delay(1000);              // ждать 1 с

}

Чтобы увеличить частоту мигания светодиода, заменим оба числа 1000 числом 200. Обе замены должны быть произведены в функции loop, поэтому теперь она должна выглядеть так:

void loop() {

  digitalWrite(led, HIGH);  // включить светодиод (HIGH — уровень напряжения)

  delay(200);               // ждать 1 с

  digitalWrite(led, LOW);   // выключить светодиод, установив уровень напряжения LOW

  delay(200);               // ждать 1 с

}

Если попытаться сохранить скетч перед выгрузкой, Arduino IDE напомнит, что этот скетч является примером и доступен только для чтения, но предложит сохранить копию, которую вы затем сможете изменять по своему усмотрению.

Однако сейчас этого делать не нужно — просто выгрузите скетч в плату, не сохраняя его. Если сохранить этот или другой скетч, вы увидите, что он появится в меню File—>Sketchbook (Файл—>Папка со скетчами) Arduino IDE.

Итак, щелкните на кнопке Upload (Загрузка) еще раз, и, когда выгрузка завершится, плата Arduino сама сбросится и светодиод должен начать мигать чаще.


Переменные

Переменные помогают дать имена числам. В действительности их возможности намного шире, но пока мы будем использовать их только для этой цели.

При объявлении переменной в языке C необходимо указать ее тип. Например, если нужна переменная, хранящая целое число, ее следует объявить с типом int (сокращенно от integer — целое со знаком). Чтобы определить переменную с именем delayPeriod и значением 200, нужно записать такое объявление:

int delayPeriod = 200;

Так как delayPeriod — это имя, в нем не может быть пробелов. По общепринятым соглашениям имена переменных должны начинаться с буквы в нижнем регистре, а каждое новое слово в имени — с буквы в верхнем регистре. Такую «горбатую» форму записи имен программисты часто называют верблюжьей нотацией (camel case).

Давайте добавим эту переменную в скетч Blink, чтобы вместо жестко зашитого значения 200, определяющего продолжительность паузы, можно было использовать имя переменной:

int led = 13;

int delayPeriod = 200;

void setup() {

  pinMode(led, OUTPUT);

}

void loop() {

  digitalWrite(led, HIGH);

  delay(delayPeriod);

  digitalWrite(led, LOW);

  delay(delayPeriod);

}

Везде в скетче, где прежде использовалось число 200, сейчас стоит ссылка на переменную delayPeriod.

Если теперь вы пожелаете заставить светодиод мигать еще чаще, достаточно будет изменить значение delayPeriod в одном месте.


If

Перейти на страницу:

Похожие книги

C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных