Читаем Программируем Arduino. Профессиональная работа со скетчами полностью

int switchPin = 7;

void setup()

{

  pinMode(ledPin, OUTPUT);

  pinMode(switchPin, INPUT_PULLUP);

}

void loop()

{

  if (digitalRead(switchPin) == LOW)

  {

    flash(100);

  }

  else

  {

    flash(500);

  }

}

void flash(int delayPeriod)

{

  digitalWrite(ledPin, HIGH);

  delay(delayPeriod);

  digitalWrite(ledPin, LOW);

  delay(delayPeriod);

}

Используя кусок провода или выпрямленную скрепку, замкните контакты GND и 7, как показано на рис. 1.13. Это можно делать на включенной плате Arduino, но только после выгрузки в нее скетча. Это связано с тем, что некий предыдущий скетч мог настроить контакт 7 на работу в режиме выхода — в этом случае замыкание на GND может повредить контакт. Так как скетч настраивает контакт 7 на работу в режиме входа, его безопасно соединять с контактом GND.

Вот что происходит в результате: когда контакты замкнуты, светодиод мигает чаще, а когда не замкнуты — реже.

Давайте исследуем скетч и посмотрим, как он работает.

Рис. 1.13. Опыт с цифровым входом

Во-первых, в скетче появилась новая переменная с именем switchPin. Этой переменной присвоен номер контакта 7. Скрепка в данном эксперименте играет роль выключателя. В функции setup контакт 7 настраивается на работу в режиме входа командой pinMode. Во втором аргументе команде pinMode передается не просто значение INPUT, а INPUT_PULLUP. Оно сообщает плате Arduino, что по умолчанию вход должен иметь уровень напряжения HIGH, если на него не подан уровень LOW соединением этого контакта с контактом GND (скрепкой).

В функции loop мы используем команду digitalRead для проверки уровня напряжения на входном контакте. Если он равен LOW (скрепка замыкает контакты), вызывается функция с именем flash и значением 100 (в параметре delayPeriod). Это заставляет светодиод мигать чаще.

Если входной контакт имеет уровень напряжения HIGH, выполняются команды в разделе else инструкции if. Здесь вызывается та же функция flash, но с более продолжительной задержкой, заставляющей светодиод мигать реже. Функция flash является упрощенной версией функции flash из предыдущего скетча, она просто включает и выключает светодиод один раз с указанной задержкой.

Цифровые входы могут соединяться с цифровыми выходами других модулей, которые действуют не так, как выключатель, но устанавливают те же уровни напряжения HIGH и LOW. В таких случаях функции pinMode следует передавать аргумент INPUT вместо INPUT_PULLUP.


Цифровые выходы

Немного нового можно сказать о цифровых выходах с точки зрения программирования после экспериментов с контактом 13, к которому подключен встроенный светодиод.

Настройка контактов на работу в режиме цифровых выходов осуществляется в функции setup с помощью следующей команды:

pinMode(outputPin, OUTPUT);

Чтобы на цифровом выходе установить уровень напряжения HIGH или LOW, нужно вызывать команду digitalWrite:

digitalWrite(outputPin, HIGH);


Монитор последовательного порта

Так как плата Arduino подключается к компьютеру через порт USB, есть возможность пересылать сообщения между ними, используя компонент Arduino IDE, который называется монитором последовательного порта (Serial Monitor). Для иллюстрации изменим скетч 01_03 так, чтобы вместо изменения частоты мигания светодиода после установки уровня напряжения LOW на цифровом входе 7 он посылал сообщение.

Загрузите следующий скетч:

// sketch 01_04_serial

int switchPin = 7;

void setup()

{

  pinMode(switchPin, INPUT_PULLUP);

  Serial.begin(9600);

}

void loop()

{

  if (digitalRead(switchPin) == LOW)

  {

    Serial.println("Paperclip connected");

  }

  else

  {

    Serial.println("Paperclip NOT connected");

  }

  delay(1000);

}

Теперь откройте монитор последовательного порта в Arduino IDE, щелкнув на кнопке с изображением, напоминающим лупу. Вы сразу же должны увидеть несколько сообщений, появляющихся одно за другим (рис. 1.14).

Рис. 1.14. Монитор последовательного порта

Разъедините контакты, убрав скрепку, и вы должны увидеть, что текст сообщения изменился.

Так как встроенный светодиод в этом скетче не используется, отпала и необходимость в переменной ledPin. Зато появилась новая команда Serial.begin, запускающая обмен сообщениями через последовательный порт. Ее параметр определяет скорость передачи. Подробнее о взаимодействиях через последовательный порт рассказывается в главе 13.

Чтобы записать сообщение в монитор порта, достаточно выполнить коман­ду Serial.println.

В данном примере Arduino посылает сообщения в монитор последовательного порта.


Массивы и строки

Массивы предназначены для хранения списков значений. Переменные, которые нам встречались до сих пор, могли хранить только одно значение, обычно типа int. Массив, напротив, может хранить список значений и позволяет обращаться к отдельным значениям по их позициям в списке.

В C, как и в большинстве других языков программирования, нумерация позиций в массиве начинается с 0, а не с 1. Это означает, что первый элемент фактически является нулевым элементом.

Перейти на страницу:

Похожие книги

C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных