Читаем Программируя Вселенную. Квантовый компьютер и будущее науки полностью

Вести счет в двоичной системе легко (но не очень, если вы встретились с ней впервые). Двоичная арифметика тоже проста. Вся таблица сложения здесь выглядит так: 0 + 0 = 0; 0 + 1 = 1; 1 + 1 = 10. Таблица умножения тут выглядит еще проще: 0 × 0 = 0; 0 × 1 = 0; 1 × 1 = 1. Прелесть, правда?

Кроме того, двоичная система практична. Благодаря компактности двоичной записи можно создавать простые электронные схемы, способные выполнять двоичные арифметические операции. Такие схемы, в свою очередь, служат базой для цифровых компьютеров. Так что даже если мы не можем дать определение того, что такое информация, это не мешает нам ее использовать.

<p>Точность</p>

«А что будет, если у нас есть бесконечное число альтернатив? – спрашивает студент. – Например, между 0 и 1 находится бесконечное количество действительных чисел».

«Если у вас есть бесконечное число альтернатив, тогда у вас есть бесконечное количество информации», – отвечаю я.

Возьмем, например, такое двоичное число: 1001001 0110110 0100000 1110100 1101000 1100101 0100000 1100010 1100101 1100111 1101001 1101110 1101110 1101001 1101110 1101111. В стандартной таблице кодирования ASCII (American Standard Code for Information Interchange – американский стандартный код обмена информацией) каждой букве или символу на клавиатуре присвоено кодовое слово из семи битов[4]. И если воспринимать наше число в кодировке ASCII, мы получим такие символы: I = 1001001; n = 1101110; (пробел) = 0100000; t = 1110100; h = 1101000; e = 1100101; (пробел) = 0100000; b = 1100010; e = 1100101; g = 1100111; i = 1101001; n = 1101110; n = 1101110; i = 1101001; n = 1101110; g = 1100111. Если мы прочтем буквы, то получится «In the beginning» – первые слова библейской фразы «В начале было слово…». Добавляя бит за битом, можно выписать число, соответствующее всему тексту Евангелия от Иоанна. Если мы добавим еще больше битов, то можем получить всю Библию, а за ней Коран, а за ним Сутру белого лотоса, а за ней все книги из Библиотеки Конгресса и т. д. Бесконечное число альтернатив соответствует бесконечному числу цифр или битов, бесконечному количеству информации.

Но на практике число альтернатив в любой конечной системе конечно, поэтому количество информации тоже конечно. Обычно мы считаем, что такие величины, как длина, высота и вес, изменяются непрерывно: точно так же, как между 0 и 1 есть бесконечное количество действительных чисел, есть и бесконечное количество возможных длин между нулем метров и одним метром. Причина, по которой непрерывные вроде бы величины, такие как длина металлического стержня, могут содержать только конечное количество информации, состоит в том, что эти величины, как правило, определяются с конечным уровнем точности. Чтобы увидеть взаимосвязь между точностью и информацией, представьте себе измерение длины стержня с помощью мерной рейки. Итак, у вас в руках обычная деревянная линейка, на которой отмечены и пронумерованы сто сантиметров. На ней сделана также тысяча миллиметровых отметок, по десять в каждом сантиметре, но уже не хватает места, чтобы их пронумеровать. Поэтому линейка позволит нам измерить длину стержня с точностью примерно до миллиметра. Длины меньше миллиметра линейка измеряет плохо – просто потому, что физические характеристики задают предел ее разрешающей способности. Общее количество альтернатив – 1000, что соответствует трем значащим цифрам, или примерно десяти битам информации.

Самый известный в мире металлический стержень был сделан из сплава платины и иридия. Он находится в Международном бюро мер и весов в Париже и на протяжении почти столетия определял длину метра. (До этого метр считался одной десятимиллионной частью расстояния от Северного полюса до экватора, измеренного вдоль парижского меридиана.) Наша линейка показала бы, что длина этого стержня – один метр плюс-минус половина миллиметра.

Если у нас есть более точный измерительный прибор, чем мерная рейка, то мы получим больше битов информации о длине того же стержня. Например, можно рассмотреть его под оптическим микроскопом. Тогда мы сможем увидеть детали, размер которых по порядку равен длине волны видимого света – немного меньше микрона, или одной миллионной доли метра. И если мы приложим к линейке микроскоп, мы сможем измерить длину стержня с точностью до микрона. Микроскоп позволит найти длину стержня с точностью в шесть значащих цифр, что соответствует примерно двадцати битам информации. Сходную степень точности можно получить с помощью интерферометра – устройства, измеряющего длину объекта длинами световых волн. Если интерферометр использует волны длиной в один микрон, он определит длину нашего стержня как один миллион световых волн.

Перейти на страницу:

Похожие книги

Суперпамять
Суперпамять

Какие ассоциации вызывают у вас слова «улучшение памяти»? Специальные мнемонические техники, сложные приемы запоминания списков, чисел, имен? Эта книга не предлагает ничего подобного. Никаких скучных заучиваний и многократных повторений того, что придумано другими. С вами будут только ваши собственные воспоминания. Автор книги Мэрилу Хеннер – одна из двенадцати человек в мире, обладающих Сверхъестественной Автобиографической Памятью – САП (этот факт научно доказан). Она помнит мельчайшие детали своей жизни, начиная с раннего детства.По мнению ученых, исследовавших феномен САП, книга позволяет взглянуть по-новому на работу мозга и на то, как он создает и сохраняет воспоминания. Простые, практичные и забавные упражнения помогут вам усовершенствовать память без применения сложных техник, значительно повысить эффективность работы мозга, вспоминая прошлое, изменить к лучшему жизнь уже сейчас. Настройтесь на то, чтобы использовать силу своей автобиографической памяти!

Герасим Энрихович Авшарян , Мэрилу Хеннер

Детская образовательная литература / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Самосовершенствование / Психология / Эзотерика
1001 вопрос об океане и 1001 ответ
1001 вопрос об океане и 1001 ответ

Как образуются атоллы? Может ли искусственный спутник Земли помочь рыбакам? Что такое «ледяной плуг»? Как дельфины сражаются с акулами? Где находится «кладбище Атлантики»? Почему у берегов Перу много рыбы? Чем грозит загрязнение океана? Ответы на эти и многие другие вопросы можно найти в новой научно-популярной книге известных американских океанографов, имена которых знакомы нашему читателю по небольшой книжке «100 вопросов об океане», выпущенной в русском переводе Гидрометеоиздатом в 1972 г. Авторы вновь вернулись к своей первоначальной задаче — дать информацию о различных аспектах современной науки об океане, — но уже на гораздо более широкой основе.Рассчитана на широкий круг читателей.

Гарольд В. Дубах , Роберт В. Табер

Геология и география / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научпоп / Образование и наука / Документальное