Читаем Происхождение мозга полностью

Однако размеры и форма мозжечка у первичноводных позвоночных могут изменяться не только в связи с пелагическим или относительно оседлым образом жизни. Поскольку мозжечок является центром анализа соматической чувствительности, он принимает самое активное участие в обработке электрорецепторных сигналов. Электрорецепцией пользуются очень многие первичноводные позвоночные. На сегодняшний день известно, что 70 видов рыб обладают развитыми электрорецепторами, а около 500 видов могут генерировать электрические разряды различной мощности. Примерно 20 видов способны как генерировать, так и рецептировать электрические поля. Наиболее изучена эта способность у гимнарха (Gymnarchus niloticus), рецептирующего электромагнитное поле, создаваемое им самим. При попадании в его поле объектов различной электропроводности гимнарх может определить направление их движения, размер и скорость. Электрорецепция используется для ухаживания друг за другом особей различного пола и подавления электромагнитных полей конкурирующих особей или других видов. Кроме гимнарха, аналогичные способности генерировать и воспринимать собственные сигналы известны у других костистых рыб, акул и скатов.

Электромагнитные сигналы первичноводные позвоночные воспринимают при помощи рецепторов двух основных типов: ампульных (ампулы Лоренцини) и клубочковых. У некоторых видов присутствуют рецепторы обоих типов, но у большинства только одного. Ампульные электрорецепторы приспособлены для восприятия медленно изменяющихся электрических полей, а клубочковые реагируют на быстрые изменения, поэтому у активно плавающих рыб, обитающих в непрозрачной воде, более развиты клубочки, а у хищников в прозрачной воде — ампульные рецепторы. Если основной системой афферентации становится электрорецепция собственного электромагнитного поля или внешних электрических полей, то мозжечок начинает выполнять роль сенсорного мозгового центра. У всех рыб, обладающих электрорецепцией, мозжечок развит чрезвычайно хорошо (см. рис. II-22, в). Зачастую полушария мозжечка так велики, что закрывают с дорсальной поверхности весь мозг.

Таким образом, структурные отделы головного мозга первичноводных позвоночных представляют собой своеобразные маркёры морфофункциональной адаптации вида к определённым условиям обитания. Анализ организации нервной системы первичноводных позвоночных даёт объективную информацию о развитии систем афферентации, способах принятия решений и ведущих мотивационных центрах головного мозга. Однако не менее интересен эволюционный путь возникновения столь компактной и эффективной системы управления поведением. Палеонтологических свидетельств возникновения современной конструкции мозга первичноводных позвоночных крайне мало. Даже самые древние находки содержат в основном информацию об уже сложившемся современном типе организации головного и спинного мозга. Реконструируя становление нервной системы первичноводных позвоночных, приходится опираться на архаические черты строения мозга современных видов.

По-видимому, появление древних хордовых не сразу привело к заметным изменениям в биологии водной среды. Судя по всему, первые хордовые были относительно небольшими животными, размером от нескольких сантиметров до полуметра. Они явно не могли составить серьёзной конкуренции процветавшим водным беспозвоночным, которые зачастую были намного больше, чем молодая группа хордовых. По размерам древние позвоночные явно проигрывали беспозвоночным и не могли на равных конкурировать с ними. Нервная система не давала особых преимуществ этой новой группе, скорее наоборот. Небольшая и хорошо детерминированная нервная система с набором эффективных поведенческих программ давала беспозвоночным заметные преимущества в конкуренции с древними хордовыми. Нервная система древних позвоночных обладала только одним положительным качеством — способностью к почти неограниченному увеличению своих размеров. Однако это преимущество было реализовано далеко не сразу. На первом этапе хордовые решали проблему конкуренции с беспозвоночными при помощи выбора среды обитания, становления строения мозга и скелета.

§ 28. Возникновение отделов головного мозга

Перейти на страницу:

Похожие книги

Достаточно ли мы умны, чтобы судить об уме животных?
Достаточно ли мы умны, чтобы судить об уме животных?

В течение большей части прошедшего столетия наука была чрезмерно осторожна и скептична в отношении интеллекта животных. Исследователи поведения животных либо не задумывались об их интеллекте, либо отвергали само это понятие. Большинство обходило эту тему стороной. Но времена меняются. Не проходит и недели, как появляются новые сообщения о сложности познавательных процессов у животных, часто сопровождающиеся видеоматериалами в Интернете в качестве подтверждения.Какие способы коммуникации практикуют животные и есть ли у них подобие речи? Могут ли животные узнавать себя в зеркале? Свойственны ли животным дружба и душевная привязанность? Ведут ли они войны и мирные переговоры? В книге читатели узнают ответы на эти вопросы, а также, например, что крысы могут сожалеть о принятых ими решениях, воро́ны изготавливают инструменты, осьминоги узнают человеческие лица, а специальные нейроны позволяют обезьянам учиться на ошибках друг друга. Ученые открыто говорят о культуре животных, их способности к сопереживанию и дружбе. Запретных тем больше не существует, в том числе и в области разума, который раньше считался исключительной принадлежностью человека.Автор рассказывает об истории этологии, о жестоких спорах с бихевиористами, а главное — об огромной экспериментальной работе и наблюдениях за естественным поведением животных. Анализируя пути становления мыслительных процессов в ходе эволюционной истории различных видов, Франс де Вааль убедительно показывает, что человек в этом ряду — лишь одно из многих мыслящих существ.* * *Эта книга издана в рамках программы «Книжные проекты Дмитрия Зимина» и продолжает серию «Библиотека фонда «Династия». Дмитрий Борисович Зимин — основатель компании «Вымпелком» (Beeline), фонда некоммерческих программ «Династия» и фонда «Московское время».Программа «Книжные проекты Дмитрия Зимина» объединяет три проекта, хорошо знакомые читательской аудитории: издание научно-популярных переводных книг «Библиотека фонда «Династия», издательское направление фонда «Московское время» и премию в области русскоязычной научно-популярной литературы «Просветитель».

Франс де Вааль

Биология, биофизика, биохимия / Педагогика / Образование и наука
Расширенный фенотип
Расширенный фенотип

«Расширенный фенотип» – одна из лучших книг известного учёного и видного популяризатора науки Ричарда Докинза. Сам автор так сказал про неё в предисловии ко второму изданию: «Думаю, что у большинства учёных – большинства авторов – есть какая-то одна публикация, про которую они говорили бы так: не страшно, если вы никогда не читали моих трудов кроме "этого", но "этот" пожалуйста прочтите. Для меня таким трудом является "Расширенный фенотип"». Помимо изложения интересной научной доктрины, а также весьма широкого обзора трудов других исследователей-эволюционистов, книга важна своей глубоко материалистической философской и мировоззренческой позицией, справедливо отмеченной и высоко оцененной в послесловии профессионального философа Даниэла Деннета.

Ричард Докинз

Биология, биофизика, биохимия