Последний всеобщий предок (LUCA) дал начало двум весьма разным группам микробов – бактериям и археям. Скорее всего, их различия связаны с тем, что они исходно приспосабливались к разным условиям обитания. Например, среди бактерий есть пять групп, способных к фотосинтезу, а среди архей таких нет. По-видимому, основной формой жизни бактерий в архейском и протерозойском периоде были цианобактериальные маты. Это слоистые колонии из многих видов микробов, общей толщиной до 1 см. Верхний слой мата состоит из цианобактерий, осуществляющих кислородный фотосинтез. Под ними находятся другие бактерии, которые ведут фотосинтез без выделения кислорода (например, серный) и используют свет с большей длиной волны, чем цианобактерии верхнего слоя. Также под цианобактериями находятся гетеротрофные бактерии, которые питаются отмершими клетками фотосинтезирующих соседей и выделяемой ими слизью. Они могут использовать кислород для дыхания. В самой глубине мата находятся микробы-бродильщики, которые разрушают органические вещества без участия кислорода. Хотя мат называется «цианобактериальным», он состоит из сотен видов разнообразных бактерий, цианобактерии доминируют в нем только по общей продуктивности.
Такой бактериальный мат на морском мелководье накапливает и упорядочивает осаждающиеся из воды минералы. В разных условиях это могут быть карбонаты, фосфаты или кремнезем. При этом образуются строматолиты («каменные ковры») – характерные слоистые минеральные отложения. В наше время строматолиты очень редки, и для ученых было большой удачей обнаружить их на мелководье залива Шарк (Австралия). Но в отложениях архейского и протерозойского периодов содержится множество строматолитов, и похоже, что в те эпохи цианобактериальные маты занимали большую часть морских мелководий и наземных водоемов.
Археи же предпочитают питаться неорганическими веществами, выходящими из глубин Земли, такими как водород и соединения серы. Они не используют энергию света[14]
и, за исключением одной группы метаногенов, не входят в состав цианобактериальных матов.Различие в составе мембран бактерий и архей отражает разные исходные условия их жизни. Бактерии сменили терпеноспирты на жирные кислоты, так как двойные связи в молекулах терпенов уязвимы к ультрафиолетовому излучению Солнца. Липиды с двойными связями, в свою очередь, сохраняют прочность и текучесть мембраны в широком диапазоне температур, что важно для обитателей горячих источников. Выходы горячей воды в них могут неожиданно исчезать и появляться, поэтому их обитатели должны быть готовы в любой момент попасть из кипятка в холодную воду и обратно. Простая эфирная связь в архейных липидах более устойчива при высоких температурах, чем сложноэфирная. У бактерий, приспособившихся к высоким температурам, сложноэфирные связи в липидах заменяются на простые эфирные, т. е. вместо жирных кислот используются жирные спирты.
Скорее всего, предки бактерий и архей с самого начала разделились по направлениям приспособления. Одна группа, давшая начало бактериям, расселялась по поверхности суши и моря и совершенствовала механизмы использования энергии света. Другая группа «выбрала темную сторону», т. е. стала осваивать подземные местообитания. Ей пришлось научиться обходиться без света, и она дала начало археями.
Способы получения энергии у бактерий и архей
Из школьного учебника биологии можно узнать, что есть три основных способа получения энергии живыми организмами. Первый, основной для человека и животных, – аэробное дыхание, в котором сахара, жиры и другие вещества из пищи окисляются кислородом до воды и углекислого газа. Второй способ – брожение, которое превращает сахара в этиловый спирт (у дрожжей) или молочную кислоту (у животных). Брожение обходится без кислорода, но дает почти в 20 раз меньше энергии на 1 г сахара, чем аэробное дыхание. Кроме того, от молочной кислоты болят мышцы после нагрузки. Третий способ, фотосинтез, используют растения, и в конечном счете от созданных в нем сахаров зависят все, кто дышит кислородом или довольствуется брожением.
В мире прокариот (бактерий и архей) способы добычи энергии из внешней среды гораздо разнообразнее. Для начала: дыхание может быть не только кислородным. Например, на дне морей в слое ила живут бактерии, которые окисляют органические вещества сульфатом из морской воды. Этот процесс называется «сульфатное дыхание», или «сульфатредукция», и в нем сульфаты превращаются в сероводород. В почве множество бактерий используют в качестве окислителя соединения азота: нитраты и нитриты. Есть две разновидности нитратного дыхания: денитрификация и аммонификация. При денитрификации образуется свободный азот или оксид азота N2
O («веселящий газ»), а при аммонификации бактерии превращают нитрат и нитрит в аммиак. Если аэробное дыхание позволяет из одной молекулы глюкозы получить 38 молекул АТФ, а брожение – только 2, то сульфатное дыхание дает 10–12 молекул АТФ на одну глюкозу, а нитратное – до 20, что гораздо лучше брожения.