Процесс фотосинтеза, как он описан в школьных учебниках, состоит из световых и темновых реакций. Световые реакции сводятся к синтезу АТФ и восстановителей, таких как НАДФН, при помощи света и какого-либо донора электронов. Темновые реакции – это восстановление СО2
при помощи НАДФН и АТФ в цикле Кальвина или, реже, в других реакциях, и они уже обсуждались в главе о происхождении обмена веществ. Темновые реакции не уникальны для фотосинтеза. Тот же цикл Кальвина работает и при хемосинтезе, и свет не принимает участия в его реакциях.Напомним структуру фотосинтетического аппарата зеленых растений. Его функциональное ядро составляют реакционные центры – встроенные в мембрану белки, с которыми связаны молекулы хлорофилла – по две в каждом реакционном центре и несколько вспомогательных, передающих энергию света в центр. Возбужденные молекулы хлорофилла передают электроны на молекулы-переносчики, и затем они попадают в электрон-транспортную цепь. В отличие от дыхательной цепи, в которой электрический ток создается «химической батареей», полюса которой – НАДН и кислород, здесь электрический ток создают реакционные центры фотосистем, работающие подобно солнечным батареям. Они питают две нагрузки: во-первых, за счет энергии света происходит электролиз воды с выделением кислорода. Во-вторых, как и в дыхательной цепи, ток электронов через механизм Q-цикла преобразуется в ток протонов через мембрану и синтез АТФ на роторной АТФазе. Напряжения, создаваемого одной фотосистемой, недостаточно для электролиза воды, поэтому две фотосистемы соединяются последовательно. Как мы помним, модули электрон-транспортных цепей соединяются подвижными переносчиками электронов, поэтому для последовательного соединения нужны разные типы переносчиков и несовместимые «разъемы» для них.
Реакционные центры делятся на два типа по используемым переносчикам электронов: фотосистемы I типа (ФСI) передают электроны на ферредоксин – маленький водорастворимый белок с железосерным кластером, а фотосистемы II типа (ФСII) – на хиноны, плавающие в мембране. Цианобактерии и хлоропласты растений обладают обоими типами фотосистем, а различные фотосинтезирующие бактерии – только одним типом из двух. Электроны ФСI через ферредоксин переносятся на НАДФ и затем используются в реакциях восстановления разных органических веществ. Электроны ФСII проходят через хиноны на цитохромный комплекс
Разнообразие систем, запасающих энергию света
Очевидно, что столь сложная система из хлорофиллов и других пигментов[16]
и электрон-транспортных цепей не могла возникнуть сразу. У нее должны были быть более простые предшественники, а возможно, и альтернативные системы фотосинтеза, не использующие хлорофилл. Как мы помним из предыдущих глав, в состав живых систем с самого начала входили молекулы с особыми отношениями со светом. Например, все азотистые основания эффективно рассеивают энергию ультрафиолетового света в тепло, защищая соседние молекулы. Адениновые нуклеотиды в растворе также способны за счет энергии света присоединять фосфатные группы, синтезируя АТФ. Древние окислительно-восстановительные коферменты, такие как НАД и ФАД, тоже могли пройти отбор на особые фотохимические свойства. Как мы помним из главы про мир РНК-коэнзимов, ФАД (флавинадениндинуклеотид) и в современном мире проводит одну реакцию при помощи энергии света. Это реакция восстановления тиминовых димеров – одного из продуктов повреждения ДНК ультрафиолетом. В ходе экспериментов было обнаружено, что силикатно-протеиноидные микросферы, содержащие флавин, могут за счет энергии света синтезировать АТФ из АДФ и фосфата (рис. 16.3).У животных и растений на основе бактериальной фотолиазы возникли криптохромы – ФАД-содержащие светочувствительные белки, регулирующие суточные и сезонные ритмы. Как ни удивительно, у животных криптохромы также участвуют в восприятии магнитного поля при помощи магниточувствительной реакции с анион-радикалом кислорода (Solovyov, Schulten, 2009).