Серные бактерии, как пурпурные, так и зеленые, для восстановления углекислого газа окисляют сероводород и серу, выделяя сульфаты. Также они могут использовать для фотосинтеза молекулярный водород (выделяя воду) и соли двухвалентного железа (осаждая магнетит, Fe2
O3). Пурпурные серные бактерии имеют фотосистему второго типа, отдающую электроны на хинон, и фиксируют CO2 в цикле Кальвина. Они особенно многочисленны в сернистых источниках и в озерах, где вода разделена на верхний пресный и нижний соленый слои. В таких озерах отсутствует перемешивание, и нижний соленый слой насыщен сероводородом.Chloroflexi тоже имеют фотосистему второго типа, подобно пурпурным бактериям, но используют 3-гидроксипропионатный цикл фиксации CO2
(Zarzycky et al., 2009). Их историческое название «зеленые несерные бактерии» неверно, так как они могут использовать для восстановления СО2 сероводород, серу и водород (Tang et al., 2011). Впрочем, самый изученный вид этой группы, Chloroflexus auranticus, в природных условиях обычно не фиксирует СО2, а потребляет органические кислоты, выделяемые соседями по сообществу, и получает за счет света только АТФ.Зеленые серные бактерии (Chlorobi) имеют фотосистему первого типа, отдающую электроны на ферредоксин, и используют восстановительный цикл Кребса для фиксации СО2
(Buchanan, Arnon, 1990).Heliobacteria используют фотосистему первого типа с бактериохлорофиллом
Разные группы фотосинтезирующих бактерий отличаются по предпочитаемой интенсивности света. Фотосистема, настроенная на улавливание слабого света, под ярким полуденным солнцем становится опасной для клетки, вызывая фотохимические повреждения белков и мембран. Многие цианобактерии способны управляться с ярким светом и имеют для этого специальные приспособления: протеинкиназы для быстрой регулировки фотосистем (в течение секунд-минут) путем фосфорилирования белков и маленькие светозащитные белки HLIP (high light induced protein), синтез которых запускается ярким светом. Часть пурпурных бактерий тоже имеют подобные приспособления и переносят яркий свет. Другие фотосинтезирующие бактерии предпочитают укрываться от яркого света под слоем воды или под клетками цианобактерий в бактериальном мате. У Chlorobi и Chloroflexi есть приспособления к очень слабому свету: хлоросомы, зерна из очень плотно упакованных молекул хлорофилла. Благодаря им Chlorobi живут, например, в сероводородном слое Черного моря на глубинах до 100 м.
Эволюция хлорофилльного фотосинтеза
Хлорофилльный фотосинтез используют пять групп бактерий, не родственных между собой. Очевидно, что в распространении генов фотосинтеза большую роль сыграл горизонтальный перенос генов. Это подтверждается и данными по вирусам, заражающим цианобактерий: в их геномах часто встречаются гены компонентов фотосистем. Вирусы могут использовать эти гены для перестройки фотосинтеза зараженной клетки, чтобы быстро получить много энергии для размножения вируса ценой гибели клетки чуть позже. Гены, кодирующие систему фотосинтеза, часто образуют в геноме бактерий компактную группу (супероперон), что должно повышать вероятность переноса всего комплекта.
Система фотосинтеза цианобактерий устроена гораздо сложнее, чем у других групп бактерий: только в ней есть два типа фотосистем, дополнительные вспомогательные пигменты (фикобилины) и белки, связывающие их в компактные гранулы (фикобилисомы), а также защитные белки HLIP и протеинкиназы для регуляции фотосистем (рис. 16.5). Если сравнить набор генов, кодирующих детали системы фотосинтеза, у разных групп фотосинтетических бактерий, то получается, что и пурпурные серобактерии, и Chlorobi, и Chloroflexi, и гелиобактерии имеют больше общих генов с цианобактериями, чем друг с другом. Иными словами, горизонтальный перенос генов фотосинтеза происходил в основном либо от цианобактерий, либо к цианобактериям, но не между четырьмя остальными группами (Mulkidjanian et al., 2006). Лишь хлоросомы, служащие для приспособления к очень слабому свету, являются общим признаком Chlorobi и Chloroflexi и, видимо, были перенесены от одной из этих групп бактерий к другой.