Окисление воды – крайне сложная задача. Окислительно-восстановительный потенциал (его сокращенно называют редокс-потенциалом) бактериохлорофилла
Водоокисляющий комплекс – это связанный с фотосистемой II марганец-кислородный кластер. Он содержит четыре иона марганца, меняющих степень окисления от +3 до +4, кроме того, с ним связано по одному иону кальция и хлора (рис. 16.6). Структура этого кластера напоминает элементарную ячейку таких природных минералов, как рансьеит (CaMn4
O9 × 3H2O) и других слоистых оксидов марганца, подобно тому как FeS-кластеры окислительно-восстановительных ферментов похожи на ячейку пирита. Существовала гипотеза о происхождении водоокисляющего комплекса от защитного фермента супероксид-дисмутазы, одна из разновидностей которого содержит два иона марганца. Такой примитивный фермент, как предполагалось, мог быть способен к двухэлектронным реакциям – окислению H2O2 до кислорода. Окисление воды до H2O2 в такой системе было невозможно из-за недостаточного редокс-потенциала хлорофилла. К сожалению, никакого сходства между последовательностями супероксид-дисмутаз и белков фотосистемы II обнаружить не удалось.Однако было давно замечено, что выделение кислорода в фотосинтезе сильно стимулируется добавлением бикарбонатов (солей HCO3-
). Добавление изотопно меченого тяжелым кислородом 18O бикарбоната показало, что при освещении в первые секунды выделяется кислород, содержащий только тяжелый изотоп 18О. Это значит, что водоокисляющий центр переключается на окисление бикарбоната, при этом выделяются кислород и углекислый газ. Кроме того, было обнаружено, что бикарбонат участвует в сборке марганцевого кластера. Водорастворимая форма марганца – ионы Mn2+. В физиологических условиях они находятся в клетке в основном в виде марганец-бикарбонатных комплексов, таких как Mn2(HCO3)22+. В процессе сборки марганцевого кластера эти комплексы присоединяются к фотосистеме II. А затем под действием света Mn2+ в составе комплексов окисляются ею до Mn3+, а бикарбонат – до кислорода и CO2.Марганец-бикарбонатные кластеры по своему редокс-потенциалу могут служить донорами электронов для бактериальных фотосистем, при этом происходит окисление Mn2+
до Mn3+. Это было обнаружено в экспериментах с фотосистемой II пурпурных бактерий, в норме окисляющих железо (Khorobrykh et al, 2007). Из этого можно построить следующую схему происхождения кислородного фотосинтеза (рис. 16.7): сначала, по мере исчерпания железа в океане, предки цианобактерий стали переходить на марганец-бикарбонатные комплексы в качестве источника электронов для фотосинтеза. Затем мутации ФСII привели к тому, что ионы Mn3+ (продукт марганец-окисляющего фотосинтеза) стали задерживаться на белке и принимать участие в его работе. Из них собрался примитивный марганец-кислородный кластер, способный проводить фотоокисление HCO3– до кислорода и CO2. Эта реакция требует в полтора раза меньше энергии, чем окисление воды, и возможностей бактериальной ФСII для этого практически достаточно. Так у фотосинтезирующих бактерий появился доступ к новому источнику электронов – бикарбонату. По мере того как запасы марганца в океане были израсходованы и осаждены в виде MnO2, процианобактерии стали переходить на окисление того, что осталось, т. е. бикарбоната. Марганец, который до того был расходным материалом для фотосинтеза, стал катализатором для использования бикарбонатов, и потребность в нем уменьшилась в тысячи раз.Далее бактериохлорофилл