В отсутствие кислорода NO растворялся в воде, давая азотистую кислоту (HNO2
). Количество оксида азота, образующегося при разряде молний, и тогда, и сейчас не очень велико – около 1 млн т ежегодно на всю Землю. Если этот оксид азота равномерно распределялся по планете, то соответствующая концентрация азотистой кислоты в водоемах получается слишком малой, чтобы ее можно было использовать для дыхания. Однако она может быть значима как азотное удобрение, а возможно, и как яд: ферменты метаногенов к ней очень чувствительны, она губительна для них.Если разнообразие и доступность окислителей на древней Земле были ниже, чем сейчас, то с восстановителями дело обстояло гораздо лучше. Как мы помним из главы 6, взаимодействие воды с горячими базальтами (серпентинизация) приводит к выделению водорода, метана и муравьиной кислоты, которые по трещинам выходят из горных пород на поверхность. В испарениях геотермальных полей даже в нашу кислородную эпоху присутствуют угарный газ и восстановленные формы фосфора – фосфиты и гипофосфиты. В древности их должно было быть значительно больше. Эти же испарения и геотермальные воды несли сероводород, а в морской воде было растворено много двухвалентного железа. Все эти восстановители можно было использовать – имелся бы только подходящий окислитель. В условиях дефицита окислителей особую ценность приобретают сильные восстановители, позволяющие получать энергию за счет выделения водорода: муравьиная кислота, угарный газ и фосфит.
Энергетика LUCA, первых бактерий и архей
Вооружившись информацией о доступности разных окислителей и восстановителей на древней Земле и об эволюции компонентов биоэнергетических систем, мы можем попробовать оценить, какие источники энергии могли использоваться LUCA и его ближайшими потомками – первыми бактериями и археями.
Как мы помним, в геотермальных водоемах, где шла эволюция от первых биологических молекулярных систем до LUCA, были уникальные источники химической энергии, ныне в основном исчезнувшие. Например, с конденсацией геотермального пара туда поступали оксиды фосфора, которые, растворяясь в воде, давали пирофосфат – источник энергии, аналогичный АТФ. Отложения сульфида цинка в этих водоемах на свету производили органические кислоты из CO2
и фосфорилировали разные органические вещества за счет окисления фосфита. Флавиновые коферменты могли обеспечивать примитивный фотосинтез, производя АТФ за счет энергии света, еще до появления мембран. Все это было доступно и общему предку бактерий и архей, уже имевшему мембраны и более 1000 генов.Разделение линий бактерий и архей произошло при освоении новых местообитаний. Судя по образу жизни современных бактерий и архей, предки бактерий расселялись по поверхности суши и океана, используя фотосинтез, а предки архей ушли в трещины и пустоты земной коры, используя химические источники энергии. Скорее всего, мембрана LUCA еще не могла держать электрический потенциал, характерный для современных мембран, и мембранной энергетики в современном смысле у него не было. Однако у LUCA существовали предшественники многих ее компонентов: система секреции белков (предок роторной АТФазы), гемы (как минимум сирогем) и, вероятно, менахинон и трансмембранный цитохром
На основе этого набора деталей для предка архей, уходящего в подземные местообитания, можно предположить обмен веществ, основанный на окислении муравьиной кислоты, угарного газа и, возможно, фосфитов:
HCOOH → CO2
+ H2CO + H2O → CO2 + H2В качестве продуктов обмена выделялись углекислый газ и водород, мембранный потенциал создавали гидрогеназы четвертого типа, родственные комплексу I. Высокая концентрация водорода в среде угнетает такой метаболизм, и, чтобы решить эту проблему, предки архей могли начать утилизировать выделяющийся водород, превращая его в метан:
4HCOOH → 3CO2
+ CH4 + 2H2O4CO + 2H2
O → 3CO2 + CH4Такой примитивный метаногенез (форматотрофный и карбоксидотрофный) позволил им получать энергию и при избытке водорода вокруг. В условиях перебоев в поступлении угарного газа и муравьиной кислоты отбор поддерживал изменения обмена веществ, позволяющие использовать более доступный водород. В классическом (гидрогенотрофном) метаногенезе:
CO2
+ 4H2 → CH4 + 2H2Oтруднее всего происходит первая стадия: восстановление CO2
до HCOOH. Для этой реакции клетка вынуждена тратить энергию, чтобы потом получить обратно на следующих стадиях. Поэтому на переходном этапе эволюции метаногенеза археи могли одновременно использовать муравьиную кислоту и водород:HCOOH + 3H2
→ CH4 + 2 H2O,