Многоклеточные животные и растения, особенно вышедшие на сушу, более уязвимы к глобальным катастрофам, чем микробная биосфера. Микробы пережили (хотя и с потерями) позднюю метеоритную бомбардировку, а подземная микробная биосфера вообще практически неуязвима. Эволюцию животных и растений может оборвать или отбросить на сотни миллионов лет назад один астероид или глобальное оледенение («Земля-снежок»). Таких глобальных оледенений на Земле было два: первое – 2,3 млрд лет назад, сразу за кислородной революцией, другое – 800–650 млн лет назад, примерно во времена появления первых животных. О причинах этих глобальных оледенений ученые спорят. Есть и другие варианты катастрофы, приводящей к глобальному вымиранию многоклеточной жизни, например близкая вспышка сверхновой. Орбита Солнца в Галактике проходит вдали от районов частых вспышек сверхновых, но это не дает полной гарантии безопасности. Многие другие звезды расположены менее благоприятно в этом смысле, и жизнь на поверхности их планет может гибнуть от вспышек сверхновых каждые 200–500 млн лет.
Относительную стабильность климата Земли обеспечивает Луна. Взаимодействие с Луной ограничивает колебания оси вращения Земли и, следовательно, колебания климата. Марс, не имеющий такого спутника, испытывает колебания наклона оси вращения от 0 до 40 градусов и частые изменения климата. Без Луны такие колебания климата на Земле, скорее всего, приводили бы к частым вымираниям животных и оттянули бы появление разумного вида.
Итак, мы видим, что в случае жизни земного типа множитель
Со всеми этими поправками к уравнению Дрейка вполне возможно, что за всю историю нашей Галактики в ней возникли считанные десятки, а то и единицы разумных видов. Если что-то помешало им начать космическую экспансию, скорее всего, каждый из них вымер еще до появления другого, и ни один из видов не имел шанса вступить в контакт.
Исследования, которые проясняют новые детали происхождения жизни, как правило, имеют и важное практическое применение. Например, создание и изучение ксенонуклеиновых и пептидонуклеиновых кислот (глава 12) ведется прежде всего для нужд медицины. Очень перспективным считается создание лекарств, действующих по принципу РНК-интерференции. Такие лекарства могут выключать один строго определенный ген в определенном типе клеток, не воздействуя на другие процессы. Их можно быстро синтезировать «под заказ», создавая, например, противораковые лекарства для каждого пациента индивидуально, с учетом особенностей его опухоли. С одной стороны, химическая основа таких лекарств должна быть подобна РНК, чтобы образовывать двойную спираль с матричной РНК выключаемого гена, а с другой – она должна отличаться от РНК, чтобы не быть разрушенной клеточной системой противовирусной защиты. Ксенонуклеиновые кислоты удовлетворяют этим требованиям и могут стать основой нового класса лекарств.
Расширение нуклеотидного алфавита (глава 6) и набора аминокислот (глава 13) является важным направлением синтетической биологии. Это позволяет получать линии микробов с новыми, невозможными в рамках 20 аминокислот свойствами, что очень пригодится в биотехнологии. Переработка всевозможных отходов, обезвреживание разливов нефти, биотопливо, новые материалы и многое другое станет доступнее.
Изучение биоэнергетики – комплексов дыхательных цепей, фотосистем и белковых проводов (главы 15, 16, 17) – может помочь в решении энергетических проблем человечества. Знание тонкостей работы фотосистем помогает совершенствовать искусственные солнечные батареи. Есть и более смелые исследования: как оказалось, дыхательные цепи бактериальных клеток можно подключить к внешним электродам, и такие «микробные батареи» дают ток. Современные солнечные батареи требуют больших затрат энергии на свое производство, и возможно, их станут вытеснять пластиковые баки с генно-модифицированными цианобактериями. Их клетки могут быть напрямую подключены к проводам или же настроены на производство любого необходимого горючего – водорода, спирта, биогаза или дизельного топлива. В отличие от солнечных батарей, они растут сами.
При серьезной генной модификации организмов необходимо принять меры, чтобы искусственные гены не передались другим видам. Здесь может помочь расширение нуклеотидного алфавита – если новые гены будут записаны новыми буквами, дикие микробы не смогут их прочитать. Но самый радикальный способ остановить утечку генов – это создать «зазеркальные» клетки из правых аминокислот и левых нуклеотидов. В природе нет механизмов, которые могли бы перенести информацию из левой ДНК в стандартную правую. Такая «зазеркальная» искусственная жизнь будет полностью подконтрольна людям, а заодно и защищена от всех природных вирусов.