Читаем Прорыв за край мира полностью

Как построить четырехмерную координатную сетку из таких систем, которые где-то движутся по орбите вокруг тяготеющего центра, где-то падают в черную дыру? Работать в такой кривой системе координат невозможно, даже если теория в ней проста. А как перейти к какой-нибудь глобальной системе координат? С помощью той же метрики! И тогда в уравнение кроме вторых производных gμν войдут множителями их первые производные и сами матрицы gμν да еще обратные к ним матрицы gμν. Их пришлось ввести дополнительно, чтобы перейти из локально-инерциальной в глобальную систему координат. Но они же являются переменными в уравнении. И уравнения получаются нелинейными, причем сильно нелинейными — их нельзя выразить степенями элементов метрического тензора. И теория оказывается существенно нелинейной: две слившиеся нейтронные звезды дадут поле, заметно отличающееся от суммы полей каждой. На самом деле физическое слияние двух нейтронных звезд приведет к их коллапсу в черную дыру. Но если пренебречь физическими процессами и просуммировать несколько нейтронных звезд «теоретически», то они станут черной дырой автоматически — окажутся под горизонтом Шварцшильда, что означает неминуемый коллапс в сингулярность. Этот коллапс никакие силы не в состоянии предотвратить, так же, как никакие силы не могут помочь преодолеть скорость света. Тут коллапс в бесконечно плотное состояние (на самом деле — в планковское состояние, см. главу 15) становится делом не столько физики, сколько геометрии: все мировые линии ведут в центр.

Такова плата за геометричность теории гравитации, или, другими словами, за ее универсальность и всеобщность. Выражения стали сложными, хотя теория минимальна — все ее модификации могут быть только сложнее. Зато в теории появились чудеса, такие как черные дыры или нестационарная вселенная.

Эйнштейн, конечно, пришел к этим уравнениям совсем другим путем, и на этом пути немалую роль сыграл Гильберт, мы просто постарались набросать естественную логическую цепочку, ведущую к общей теории относительности через более простые конструкции.

12.2. Явление, непосредственно связанное с одним из решений общей теории относительности, найденных аналитически (решение Керра для вращающейся черной дыры): джет ядра галактики М87. Это релятивистская струя замагниченной плазмы, индуцируемая непосредственно вращающейся черной дырой, погруженной во внешнее магнитное поле. Именно эта черная дыра, возможно, будет первой, которую удастся «разглядеть» с помощью микроволновых космических интерферометров. На данном снимке для этого не хватает пяти порядков по разрешению. Снимок космического телескопа «Хаббл» (NASA)

Разумеется, уравнения Эйнштейна решать сложно. В общем случае они поддаются только численному перемалыванию на суперкомпьютерах. Аналитические решения, не сводящиеся к малым поправкам для ньютоновского тяготения, можно пересчитать по пальцам. Из решений, наверняка имеющих отношение к реальности, это черные дыры Шварцшильда (не вращающиеся), вращающиеся черные дыры Керра, гравитационные волны, однородная изотропная вселенная Фридмана и де Ситтера. Есть аналитические решения, представляющие, скорее, академический интерес — заряженные черные дыры, однородная анизотропная вселенная и еще несколько. Есть много решений, описывающих кротовые норы с разными уравнениями состояния вещества. Имеют ли они отношение к реальности, пока не известно.

Нас интересуют уравнения для однородной изотропной вселенной, каковой является наша. Это самый простой случай. Из-за однородности и изотропии в уравнениях выпадают все производные gμν по координатам, остаются только производные по времени. Тензор энергии импульса становится диагональным, по диагонали стоят ε, -р, -р, -р, где ε — плотность энергии, р — давление. Метрический тензор при этом выражается всего через два параметра — масштабный фактор a(t) и кривизну трехмерного пространства k/R(t). При этом к определяет знак кривизны (k = 1 для замкнутой вселенной, k = -1 для открытой и k = 0 для плоской), a R(t) — радиус кривизны вселенной. Первое уравнение Эйнштейна (с индексами 0, 0) принимает вид:

(ȧ/a)2 = 8πGε/3 — κ/R(t)2,

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука