Как много существует энергетических уровней? Когда ядро переходит с уровня
Когда приходится иметь дело с таким уровнем сложности, точная математика сталкивается с целым рядом проблем, и поэтому исследования в этой области стали опираться на статистику. Если мы не можем определить, что произойдет точно, то, возможно, нам удастся выяснить, что скорее всего произойдет в среднем. Подобные статистические подходы широко развивались в классической механике начиная примерно с 1850 года, т.е. задолго до появления квантовой теории. В квантовом мире все устроено слегка по-другому, но там, по крайней мере, можно использовать значительный объем результатов, накопленных в классической теории. В конце 1950-х и начале 1960-х годов был создан основной аппарат и были разработаны статистические средства для анализа сложных квантовых динамических систем, подобных ядрам тяжелых элементов. Главными действующими лицами здесь были ядерные физики Юджин Вигнер и Фримен Дайсон. Главным же понятием оказались случайные матрицы.
Случайная матрица — это именно то, что следует из ее названия: матрица, составленная из чисел, выбранных случайным образом. На самом деле не совсем случайным. Позвольте привести пример. Вот случайная (4x4)-матрица достаточно специального типа, важность которого я объясню чуть позже. Для экономии места будем все округлять до четырех знаков после запятой:
Первое, что можно заметить по поводу этой хитроумной штуковины, — данная матрица является эрмитовой: она обладает той самой как бы симметрией относительно главной диагонали, которая упоминалась в главе 17.v. Вспомним еще несколько фактов из той главы.
• С каждой
• Нули характеристического многочлена называются
• Сумма собственных значений называется
• В частном случае эрмитовых матриц все собственные значения вещественны и, следовательно, вещественны и коэффициенты характеристического многочлена, а также след.
Для матрицы из приведенного примера характеристический многочлен имеет вид
а собственные значения равны -3,8729, 0,0826, 1,5675 и 4,0864. След равен 1,8636.
Посмотрим теперь повнимательнее на те числа, из которых состоит приведенная выше матрица. Числа, которые мы видим, — вещественные числа на главной диагонали и также вещественные и мнимые части комплексных чисел, занимающих места недиагональных элементов, — случайны в некотором специальном смысле (диагональные случайны с небольшим уточнением, которое будет объяснено ниже). Они выбраны случайным образом из нормального гауссова распределения — знаменитой «колоколообразной кривой», которая повсеместно возникает в статистике.
Рисунок 18.1.
Нормальное гауссово распределение.Представим себе стандартную колоколообразную кривую, нарисованную на разлинованном листе бумаги с очень мелкими делениями, так что под кривой расположены сотни квадратиков, образованных разметкой листа (рис. 18.1). Случайным образом выберем один из этих квадратиков; расстояние по горизонтали от него до вертикальной линии, проходящей через середину пика, представляет собой случайное число с нормальным гауссовым распределением. Вблизи самого пика скопилось намного больше этих квадратиков, чем под хвостами кривой, так что с гораздо более высокой вероятностью мы выберем число между +1 и -1, нежели число справа от +2 или слева от -2. Это же видно и из приведенной выше матрицы. (Впрочем, по некоторым техническим причинам элементы на ее главной диагонали в действительности представляют собой случайные гауссовские числа, умноженные на 2, а потому их значения — несколько большие, чем того следовало ожидать.)