Все это было известно 100 лет назад… Другими словами, в то время, когда Давид Гильберт только приступал к изучению интегральных уравнений, причем исследование операторов играло там ключевую роль. В начале XX века другие математики — одни независимо, другие — вдохновившись работой Гильберта, — также были поглощены исследованием операторов. Операторы просто носились в воздухе. Гипотеза Римана в тот момент тоже висела в воздухе, но не до такой степени, хотя после доклада Гильберта в 1900 году и публикации книги Ландау в 1909-м всерьез задумываться о ней начали многие лучшие умы.
Поэтому не должно показаться слишком неожиданным, что два наиболее блестящих и широко мыслящих интеллекта своего времени смогли соединить эти две вещи. Один из этих интеллектов принадлежал Гильберту, а другой — Джорджу Пойа. И тот и другой, судя по всему, пришли к одному и тому же пониманию независимо друг от друга. Их мыслительные процессы, наверное, развивались примерно таким образом:
Имеется математический объект — эрмитова матрица, которая построена из комплексных чисел, но самая сокровенная и важная характеристика которой — набор собственных значений — неожиданным образом выражается одними лишь вещественными числами. А вот имеется функция — дзета-функция Римана, которая построена из комплексных чисел; и ее наиболее сокровенная и важная характеристика — набор ее нетривиальных нулей. (Для целей данного рассуждения забудем пока о других нулях.) Каждый из этих нулей лежит в критической полосе. Они симметричны относительно критической прямой с вещественной частью
1/ 2. Скажем, что типичный нуль имеет вид 1/ 2Математики 1910-х годов на самом деле сказали бы «оператор», а не «матрица». Хотя матрицы и были разбросаны повсюду после их изобретения Артуром Кэли в 1856 году, они все же не стали всеобщим достоянием, пока около 1925 года на сцене не появилась квантовая механика. И все же здесь можно увидеть грубую аналогию. И набор собственных значений эрмитовой матрицы, и набор нетривиальных нулей дзета-функции представляют собой наборы чисел, возникающих из ключевого свойства существенно комплексных объектов и неожиданным образом оказывающихся вещественными. Отсюда возникает следующая
Нетривиальные нули дзета-функции Римана соответствуют собственным значениям некоторого эрмитова оператора.
Происхождение этой гипотезы несколько туманно. И Гильберт, и Пойа должны были бы упоминать возможность некоторой подобной эквивалентности в лекциях или в разговорах в те годы (1910–1920). Но насколько мне удалось установить, ни один из них не воплотил эту мысль в опубликованной статье. Насколько я знаю — и, как сообщает Питер Сарнак, насколько он знает, — единственным письменным свидетельством того факта, что гипотеза Гильберта-Пойа вообще была высказана, остается письмо, которое 20 лет тому назад Пойа написал Эндрю Одлыжко и фрагмент которого приведен на рисунке 17.3. В нем Пойа сообщает, что Эдмунд Ландау задал ему следующий вопрос: «Можете ли вы придумать какую-нибудь
Рисунок 17.3.
Фрагмент письма Джорджа Пойа к Эндрю Одлыжко.