Читаем Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. полностью

Но арифметика обладает тем занятным свойством, что в ней довольно легко сформулировать утверждения, которые невероятно трудно доказать. В 1742 году Кристиан Гольдбах выдвинул свою знаменитую гипотезу, что любое четное число большее двойки можно представить как сумму двух простых чисел. Усилия, прилагавшиеся лучшими умами на планете на протяжении двадцати шести десятков лет, не принесли ни доказательства, ни опровержения этого простого утверждения (которое послужило источником вдохновения по крайней мере для одного романа: «Дядя Петрос и гипотеза Гольдбаха» Апостолоса Доксиадиса. [48]В арифметике имеются сотни подобных гипотез, одни из них доказаны [49], а другие остаются открытыми.

Нет сомнения, что именно это имел в виду Гаусс, когда отверг предложение вступить в соревнование за награду, обещанную за доказательство Последней теоремы Ферма. Генриху Олберсу, который побуждал его участвовать, Гаусс ответил: «Должен сознаться, что теорема Ферма… не слишком меня интересует, поскольку я без труда мог бы произвести множество утверждений подобного типа, — таких, которые будет невозможно ни доказать, ни опровергнуть».

Следует, впрочем, сказать, что равнодушие Гаусса в данном случае — это точка зрения меньшинства. Задача, сформулировать которую можно в нескольких простых словах, но решить которую лучшие математические таланты не могут на протяжении десятилетий — или, как в случае гипотезы Гольдбаха или Последней теоремы Ферма, столетий, — обладает неотразимой привлекательностью для большинства математиков. Они знают, что могут прославиться, если решат ее, как это произошло с Эндрю Уайлсом, доказавшим Последнюю теорему Ферма. Из истории вопроса им также известно, что даже неудачные попытки могут привести к созданию мощных новых методов и получению новых результатов. И кроме того, никуда не делся «фактор Мэлори»: отвечая на вопрос «Нью-Йорк таймс», почему ему так хочется забраться на гору Эверест, Джордж Мэлори [50]ответил: «Потому что она есть».


V.

Связь между измерением и счетом такова. Поскольку нет никакого теоретического предела точности, с которой можно измерить некую величину, список всех возможных измерений бесконечен и при этом бесконечно измельчен. Между измерением, которое дает 2,3 дюйма, и измерением, которое дает 2,4 дюйма, имеются промежуточные, более точные результаты в 2,31, 2,32, 2,33, …, 2,39 дюйма, которые можно разбивать далее, и так до бесконечности. Поэтому мы можем совершить мысленное путешествие, в котором, переходя от одного результата измерения к любому другому, мы связываем их через бесчисленное количество других, расположенных между ними, и при этом никогда не возникнет проблемы, что нам будет не на что наступить. Эта идея связности — путешествия через пространство или некоторый интервал без необходимости перепрыгивать через пустоты — лежит в основе жизненно важных математических понятий непрерывностии предела. Другими словами, она лежит в основе всего анализа.

Наоборот, если мы занимаемся счетом, то между семью и восемью ничего нет; нам приходится совершать прыжок от одного числа к другому, причем между ними нет никаких камешков, по которым можно было бы скакать. Да, измеряя что-то, можно получить результат в семь с половиной дюймов, но нельзя насчитать семь с половиной объектов. (Ваше возражение могло бы быть таким: «А что, если у меня семь с половиной яблок? Разве это не высказывание о результате счета?» Я бы ответил: «Я могу разрешить вам выражаться таким образом, но только если вы уверены, что там ровносемь с половиной яблок, — в той же степени, в которой Ларри, Керли и Моу [51]— это ровно три человека. А что, если у вас 0,501 или 0,497 от целого яблока?» И если мы желаем разрешить этот вопрос, то мы немедленно попадаем в царство измерений. «Семь с половиной струнных квартетов» — это жульничество.)

Великое соединение арифметики и анализа — соединение счета и измерения, чисел staccato и чисел legato — возникло в результате исследования простых чисел, предпринятого Леженом Дирихле в 30-х годах XIX века. Дирихле (1805-1859), несмотря на свои имя и фамилию, был немцем из городка близ Кельна, где он и получил большую часть своего образования. [52]Тот факт, что он был немцем, уже сам по себе заслуживает небольшого отступления, ибо соединение идей из арифметики и анализа, выполненное Дирихле и Риманом, происходило на фоне широких социальных изменений в математике в целом — подъемом немцев.


VI.

Перейти на страницу:

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука