Читаем Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. полностью

Функция, показанная на рисунке 7.3, а это в действительности функция 1/ x 4, т.е., другими словами, x -4, — ограничивает собой некоторую площадь между аргументами x = 2 и x = 3. Чтобы найти эту площадь, сначала надо найти интеграл от x -4. Согласно приведенному выше общему правилу, этот интеграл равен - 1/ 3 x -3, т.е. -1/(3 x 3). Эта функция, как и всякая другая, имеет значение для каждого xиз своей области определения. Чтобы найти площадь между аргументами 2 и 3, надо вычислить значение интеграла при аргументе 3, затем вычислить значение интеграла при аргументе 2, а потом вычесть второе значение из первого.

При x = 3 значение функции -1/(3 x 3) равно - 1/ 81, при x = 2 оно составляет - 1/ 24. Вычитаем, не забывая, что вычесть отрицательное число — это все равно что прибавить соответствующее положительное: - 1/ 81- (- 1/ 24) = 1/ 24- 1/ 81, что равно 19/ 648, т.е. примерно 0,029321.

У математиков есть специальный способ для записи всей этой процедуры: , что читается как «интеграл от икс в минус четвертой степени по дэ-икс от двух до трех». (Не слишком озадачивайтесь этим самым «по » — назначение этих слов состоит в указании, что именно xявляется основной переменной, с которой мы работаем, и именно ее интеграл надо найти. Если под знаком интеграла окажутся еще другие переменные, то они будут там присутствовать праздно, интегрирование ведется не по ним. В главе 19 у нас появится такой пример.)

Далее. Иногда оказывается возможным отправить правый конец интегрирования на бесконечность, но при этом получить конечную площадь. Это напоминает ситуацию с бесконечными суммами: если значения ведут себя должным образом, такие суммы могут сходиться к конечному значению. То же и здесь. У функций, которые ведут себя должным образом, площадь под кривой может оказаться конечной, несмотря даже на то, что область бесконечно длинная. Интегралы связаны с суммами на глубинном уровне. Даже знак интеграла, впервые использованный Лейбницем в 1675 году, представляет собой вытянутое S, обозначающее «сумму».

Смотрите: предположим, что вместо того, чтобы останавливаться на тройке, мы бы продолжили интегрирование до x = 100. Тогда, поскольку куб числа 100 равен 1 000 000, наше вычисление приобрело бы вид:

(-
1/ 3 000 000) - (- 1/ 24) = 1/ 24- 1/ 3 000 000.

Ясно, что если бы мы пошли еще дальше, то второе слагаемое стало бы еще меньше. По мере того как мы спешим к бесконечности, оно постепенно угасает, стремясь к нулю, и у нас есть полное право написать:

Стоит заметить, что, когда интеграл используется для вычисления площади, xисчезает из ответа: вместо xподставляются числа и в ответе получается число.

Вот и все. Клянусь, это все, что нам понадобится из дифференциального и интегрального исчисления. И поскольку ничего нового вводиться не будет, пользоваться дифференциальным и интегральным исчислением мы начнем прямо сейчас. С их помощью мы определим новую функцию, которая чрезвычайно важна в теории простых чисел и дзета-функции.


VIII.

Сначала рассмотрим функцию 1/ln  t. Ее график показан на рисунке 7.4. Обозначение для аргумента заменено с xна tпо той причине, что букве xотведена другая роль, чем просто быть бессловесной переменной.

На рисунке затемнена некоторая область под графиком, поскольку мы сейчас устроим небольшое интегрирование. Как только что объяснялось, интегрирование — это способ вычислить площадь под графиком функции. Сначала надо найти интеграл от интересующей нас функции, а потом взять калькулятор. Итак, каков же интеграл от функции 1/ln  t?

К сожалению, в домашнем хозяйстве нет обычной функции, которая позволила бы выразить интеграл от 1/ln  t. Но интеграл этот весьма важен. Он снова и снова появляется в исследованиях, связанных с Гипотезой Римана. Поскольку нежелательно писать всякий раз, как потребуется эта монструозная конструкция, мы попросту определим новую функцию, выражаемую этим интегралом, и выдадим ей свидетельство, что это добропорядочная и уважаемая функция, ни в чем не уступающая другим своим коллегам.


Рисунок 7.4.Функция 1/ln  t.

У этой новой функции есть имя: ее зовут интегральный логарифм. Для нее обычно используется обозначение Li( x). (Иногда пишут li( х).) Она определена как функция, выражающая площадь под кривой — то есть под графиком функции 1/ln  t— от нуля до x. [59]

Здесь не обошлось без некоторой ловкости рук, потому что у функции 1/ln  tнет значения при t = 1 (из-за того что логарифм единицы равен нулю). Я обойду эту сложность, не углубляясь в нее, — просто заверю вас, что имеется некоторый способ привести все в порядок. Надо еще заметить, что при вычислении интегралов области ниже горизонтальной оси считаются отрицательными, так что по мере увеличения tобласть справа от 1 «тратится» на сокращение области слева от 1. Другими словами, Li( x) выражается затемненной областью на рисунке 7.4, причем отрицательный вклад в площадь, набираемый слева от = 1, гасится положительным вкладом от площади справа от t = 1 (когда xлежит справа).

Перейти на страницу:

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука