Читаем Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. полностью

В ноябре, после возвращения Римана в Геттинген, его назначили доцентом в университете со скромным жалованьем в 300 талеров в год. Но беда не приходит одна. Его брат Вильгельм в тот же месяц скончался в Бремене, а затем, в начале следующего года, умерла его сестра Мария. Семья, которую Риман боготворил и в которой сосредотачивалась вся его эмоциональная жизнь, исчезала у него на глазах. Он перевез двух оставшихся сестер к себе в Геттинген.

Летом 1858 года во время лекции в Швейцарии у Дирихле случился сердечный приступ, и в Геттинген его перевезли с немалым трудом. Пока он лежал тяжелобольным, его жена скоропостижно умерла от удара. Дирихле воссоединился с ней в мае следующего года. (Его мозг составил компанию мозгу Гаусса на факультете физиологии.) Должность Гаусса теперь освободилась.


VIII.

От смерти Гаусса до смерти Дирихле прошло четыре года, два месяца и двенадцать дней. За этот отрезок времени Риман потерял не только двух коллег, которых он ценил более всех других математиков, но и отца, брата, двух сестер и жилище викария в Квикборне — то единственное место на земле, которое было ему домом и прибежищем с самого детства.

В то самое время, как эмоциональная жизнь Римана омрачалась одним ударом за другим, его звезда на математическом небосклоне восходила. К концу 1850-х годов блеск и оригинальность его работ стали известны математикам почти по всей Европе. Болезненно застенчивый молодой студент, лишь за десять лет до того приехавший в университет, чтобы начать работу над своей диссертацией, теперь стал заметным математиком, и о Геттингенском университете, который в начале 1850-х годов слыл прежде всего университетом Гаусса, начали говорить как об университете Гаусса, Дирихле и Римана. (Но не Дедекинда, которому еще предстояло создать свои лучшие работы. Дедекинд, кстати, уехал из Геттингена, получив должность в Цюрихе, осенью 1858 года.)

Не слишком неожиданным поэтому был выбор руководства университета в пользу Римана как второго преемника Гаусса. 30 июля 1859 года он получил должность ординарного профессора, что означало обеспеченное существование, и — видимо, как признание за ним необходимости содержания двух оставшихся в живых сестер — апартаменты Гаусса в обсерватории. Скоро последовали и другие знаки отличия. Первый — 11 августа, когда он был произведен в члены-корреспонденты Берлинской академии наук. Риман вернулся в Берлин спустя немногим более 10 лет после того, как уехал оттуда, но вернулся со скромной коллекцией венков на своем челе и был встречен с почетом теми, чьи имена составляли славу немецкой математики: Куммером, Кронеккером, Вейерштрассом, Борхардом.

Венцом триумфа Римана стало представление им на суд академии своей работы «О числе простых чисел, не превышающих данной величины». В ее первой фразе он благодарит двух людей, к этому моменту уже покойных, помощь которых (хотя и предоставившаяся намного более охотно со стороны Дирихле, чем со стороны Гаусса) позволила ему покорить высоты. Во второй фразе он демонстрирует Золотой Ключ. В третьей присваивает имя дзета-функции. Первые три предложения работы Римана 1859 года в действительности таковы:

За внимание, которое Академия выказала в мой адрес, приняв меня в качестве одного из своих членов-корреспондентов, более всего, как мне представляется, я мог бы высказать благодарность, незамедлительно воспользовавшись таким образом полученными мною привилегиями представить сообщение об исследовании частоты появления простых чисел; несмотря на длительный интерес к этому предмету со стороны и Гаусса, и Дирихле, сообщение по этому поводу представляется не лишенным некоторого интереса.

В качестве отправной точки моего исследования я исхожу из наблюдения Эйлера о выражении произведения

где p— все простые, a n— все целые числа. Функцию комплексной переменной s, которая задается каждым из этих выражений, коль скоро они сходятся, я обозначу как (s).

Гипотеза Римана, появляющаяся на четвертой странице той работы, утверждает некий факт о дзета-функции. Чтобы продвинуться в понимании Гипотезы, нам предстоит теперь более серьезно углубиться в устройство дзета-функции.

Глава 9. Расширение области определения

I.

Перейти на страницу:

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука