Читаем Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. полностью

Грубая прикидка подсказывает, что у этой функции перспективы сходимости лучше, чем у выражения (9.1). Вместо непрестанного прибавления чисел здесь мы по очереди то прибавляем, то вычитаем, так что каждое следующее число до некоторой степени сокращает вклад предыдущего. Так оно и выходит. Математики в состоянии доказать — хотя здесь мы этим заниматься не будем, — что этот новый бесконечный ряд сходится всегда, когда sбольше нуля. Это существенное улучшение по сравнению с выражением (9.1), которое сходится, только когда sбольше единицы.

Но какая нам от всего этого польза в отношении дзета-функции? Для начала заметим, что в силу элементарных алгебраических правил A - B + C - D + E - F + G - H + …равно (A + B + C + D + E + F + G + H + …)минус 2x (B + D + F + H + …). Поэтому функцию (s)можно переписать как

минус

Первая скобка — это, конечно, (s). Вторую скобку легко упростить, пользуясь 7-м правилом действий со степенями: (ab) n = a nb n. Таким же образом каждое из этих четных чисел можно разбить в произведение вида  , после чего можно вынести  в качестве множителя перед всей скобкой. А что останется в скобке? Там останется (s)! Коротко говоря,

или, переписав это «наоборот» и слегка причесав, получаем

Вот. Это означает, что если нам удастся узнать какое-то значение (s), то мы немедленно будем знать и значение (s). А поскольку можно узнать значения (s)между 0 и 1, можно получить и значение (s)в этом промежутке, несмотря на то что «официальный» ряд для (s)там не сходится.

Пусть, например, sравно 1/ 2. Если сложить 100 членов ряда для  ( 1/ 2), то получится 0,555023639…; если сложить 10 000 членов, получится 0,599898768…. В действительности значение  ( 1/ 2) составляет 0,604898643421630370…. (Существуют определенные приемы позволяющие вычислять такое без необходимости сложения мириад членов.) Вооруженные всем этим, мы можем вычислить значение ( 1/ 2) оно оказывается равным -1,460354508…, что выглядит очень правдоподобно, если судить по первому графику из приведенного выше набора.

Но задержимся на мгновение. Не устроили ли мы тут игру в наперстки с двумя бесконечными рядами, один из которых сходится при аргументе s= 1/ 2, а другой — нет? Ну, строго говоря, мы действуем не совсем по правилам, и я обошелся довольно безответственно с той математикой, на которой здесь все основано. Однако же я получил правильный ответ, причем этот фокус можно повторить для любого числа между нулем и единицей (не включая ее) и получить правильное значение для (s).


VI.

За исключением одного только s = 1, где (s)не имеет значения, мы можем теперь предъявить значение дзета-функции для любого числа s, большего нуля. А как насчет аргументов равных нулю или меньших нуля? Вот здесь все по-настоящему круто. Один из результатов в работе Римана 1859 года состоит в доказательстве формулы, впервые предложенной Эйлером в 1749 году, которая выражает (1  - s)через (s). Таким образом, если мы желаем узнать, например, значение (-15), то надо просто вычислить значение (16) и подставить его в эту формулу. Это, правда, неслабая формула, и я привожу ее главным образом для полноты картин: [75]

Всюду здесь — это магическое число 3,14159265…, sin — добрая старая тригонометрическая функция синус (от аргумента, выраженного в радианах), а знак «!» обозначает факториальную функцию, упоминавшуюся уже в главе 8.iii. В математике, изучаемой в старших классах, вы встречались только с факториальной функцией, аргументами которой являются положительные целые числа: 2! = 1x2, 3! = 1x2x3, 4! = 1x2x3x4 и т.д. В высшей математике, однако, есть способ определить факториальную функцию для всех чисел, кроме отрицательных целых, для чего применяется прием расширения области определения вполне в духе того, которым мы только что пользовались. Например, ( 1/ 2)! оказывается равным 0,8862269254… (на самом деле — половине квадратного корня из ), (- 1/ 4)! = 1,2254167024… и т.д. Отрицательные целые создают проблемы в этой формуле, но это не критические проблемы, и я ничего о них говорить не буду. На рисунке 9.11 изображена полная факториальная функция для аргументов от -4 до 4.

Рисунок 9.11.Полная факториальная функция x!.

Перейти на страницу:

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука