Читаем Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. полностью

Рисунок 12.1.Критическая полоса (затемнена) и критическая прямая (показана штрихами).

Гипотеза Римана (в геометрической формулировке)

Все нетривиальные нули дзета-функции лежат на критической прямой.

• Нули появляются сопряженными парами. Другими словами, если a + bi— один из нулей, то нулем является и a - bi. Или еще по-другому, если z— один из нулей, то нулем будет и результат его комплексного сопряжения z'. Мы определили «комплексное сопряжение» и обозначения «зет-с-чертой» в главе 11.v. И еще одним способом скажем так: если имеется нуль сверху от вещественной прямой, то его зеркальное отображение снизу от вещественной прямой также будет нулем (верно, разумеется, и обратное).

• Вещественные части нулей симметричны относительно критической прямой, т.е. нуль или имеет вещественную часть, равную  1/ 2(в духе Гипотезы Римана), или же представляет собой один из элементов пары с вещественными частями 1/ 2 +  и 1/ 2  для некоторого вещественного числа , заключенного между 0 и 1/ 2, и с одинаковыми мнимыми частями. Примерами могли бы служить вещественные части 0,43 и 0,57 или же вещественные части 0,2 и 0,8. Другой способ сказать то же самое таков: если предположить, что имеется нетривиальный нуль нена критической прямой, то его зеркальный образ при отражении относительнокритической прямой также должен быть нулем. Это следует из той формулы в главе 9.vi. Если одна сторона формулы равна нулю, то другая также должна равняться нулю. Не будем рассматривать целые значения буквы s(при которых другие члены в той формуле или ведут себя плохо, или обращаются в нуль); тогда эта формула сообщает, что если (s)равна нулю, то (1  - s)также равна нулю. Тем самым, если ( 1/ 2 +  ) + itпредставляет собой нуль дзета-функции, то нулем является и ( 1/ 2 -  ) - it, а значит, в соответствии с предыдущим пунктом и результат его сопряжения ( 1/ 2 -  ) + it.

Когда Гильберт выступал со своим докладом, сверх этого было известно немного. Риман предложил еще другую формулу с волной для приближенного числа нулей с мнимой частью между нулем и неким большим числом T(см. главу 16.iv). Однако эту формулу доказали лишь в 1905 году (сделал это фон Мангольдт). Но Гипотезу Римана не забыли совсем. Она мелькает как тема для обсуждения в математической литературе 1890-х годов, например, во французском журнале задач L'lnterm'ediaire des Math'ematiciens.Но по сути дела математики XIX века оставили задачу разбираться с великой и ужасной Гипотезой Бернхарда Римана математикам XX столетия.


IV.

XX столетие было довольно… довольно деятельнымстолетием. Много чего произошло во всех сферах человеческой жизни. Поэтому в ретроспективе век кажется ужасно долгим, намного дольше, чем просто полторы стандартные протяженности человеческой жизни, в общем-то и составляющие век. Но математика выступает величавой неспешной поступью, и глубокие проблемы, исследуемые современными математиками, выдают свои тайны очень медленно и неохотно. Внутри каждой конкретной математической дисциплины мир также довольно тесен, со своими героями, фольклором и устными традициями, связывающими сообщество воедино как в пространстве, так и во времени. Когда я собирал материал для этой книги, то из разговоров с ныне здравствующими математиками сделал вывод, что XX столетие не так уж далеко простерлось во времени — великие имена, связанные с его началом, находятся от нас все еще «в пределах слышимости».

Например, я пишу эти строки всего неделю спустя после разговоров с Хью Монтгомери, ключевым персонажем в достижениях (о которых будет рассказано в подходящий момент) 70-х и 80-х годов XX века. Хью закончил аспирантуру в Тринити-колледже в Кембридже в конце 1960-х. Среди сотрудников колледжа, которых он знал лично, был Джон Идензор Литлвуд (1885-1977), который в 1914 году получил один из первых значительных результатов, продвигающих вперед наше понимание Гипотезы Римана. «Он пытался убедить меня понюхать пороху с этой задачей», — рассказывает Хью, у которого до сих пор сохранились рукописные записки Литлвуда. Литлвуд теоретически мог бы встретиться и говорить о математике с другом Римана Рихардом Дедекиндом, который дожил до 1916 года, продолжая заниматься математикой практически до самого конца жизни, и который учился у Гаусса! (Мне не удалось выяснить, имела ли такая встреча место в действительности. В реальности она не очень вероятна. Дедекинд ушел на пенсию с поста профессора в Брауншвейгской политехнической школе в 1894 году, после чего, согласно Джорджу Пойа [106], «жил тихой жизнью, встречаясь лишь с очень небольшим числом людей»).

Перейти на страницу:

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука