Читаем Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. полностью

Навязчивая идея захватывала различных математиков различными способами, сообразно их математическим наклонностям. Поэтому в течение столетия развивалось несколько направлений — различных подходов к исследованию Гипотезы, у истоков каждого из которых стояла какая-то одна личность, затем передававшая эстафету другим, причем пути этих исследований порой пересекались и перепутывались друг с другом. Например, в рамках вычислительногонаправления усилия математиков были направлены на явное вычисление все большего и большего количества нулей и на усовершенствованию методов для таких вычислений. Было и алгебраическоенаправление, инициированное Эмилем Артином в 1921 году в попытке доказать Гипотезу Римана фланговым маневром через раздел алгебры, называемый теорией полей; позднее в том же столетии замечательная встреча двух людей, о которой я расскажу в свое время, привела к возникновению физическогонаправления, соотносящего Гипотезу с математикой, управляющей физикой элементарных частиц. И пока все это продолжалось, специалисты по аналитическойтеории чисел не прекращали своих усилий, продолжая заложенную самим Риманом традицию по изучению Гипотезы средствами теории функций комплексной переменной.

Исследование простых чисел самих по себе тем временем шло своим чередом, без особенных приложений к Гипотезе, но все же с часто выражаемой надеждой, что новые результаты о распределении простых чисел прольют свет на причину, по которой Гипотеза на самом деле верна — или, если уж так случится, неверна. Ключевыми продвижениями здесь явились развитие в 1930-х годах вероятностной модели для распределения простых чисел и данное в 1949 году Сельбергом «элементарное» доказательство Теоремы о распределении простых чисел, рассмотренной в главе 8.iii.

Рассказывая об этих достижениях, я буду стараться, чтобы в каждый данный момент было ясно, какое из направлений рассматривается, хотя временами ради поддержания общей хронологии рассказа придется перескакивать с одного на другое. Начнем с небольшого вступительного замечания о «вычислительном» направлении, ибо оно проще всего для понимания нематематиками. Каковы в реальности значения — числовые значения — нетривиальных нулей дзета-функции? Как их можно вычислить? И если взять их все вместе, то каковы будут их статистические свойства?


VIII.

Первые конкретные сведения о нулях были получены датским математиком Йоргеном Грамом, вскользь упоминавшимся в главе 10. Будучи математиком-любителем, не работавшим ни в каком университете (а работавшим, подобно поэту Уоллесу Стивенсу, управляющим страховой компанией), Грам, похоже, в течение нескольких лет забавлялся с методами, позволяющими реально вычислять положения нетривиальных нулей (происходило это, понятно, задолго до эры компьютеров). В 1903 году, остановившись на достаточно эффективном методе, он опубликовал список 15 «первых» нулей — тех, которые расположены выше вещественной оси и лежат ближе всего к ней. На рисунке 12.2 грамовские нули показаны жирными точками на критической прямой. Его список, содержавший кое-какие неточности в последних из приведенных знаков после запятой, начинался как

1/ 2 + 14,134725 i, 1/ 2+ 21,022040 i, 1/ 2+ 25,010856 i, ….

Рисунок 12.2.Грамовские нули.

Каждый из выписанных нулей, как видно, имеет вещественную часть, равную одной второй. [110](А кроме того, существование каждого из корней предполагает и существование сопряженного, расположенного под вещественной осью: 1/ 2 - 14,134725 iи т.д. Я буду считать этот факт само собой разумеющимся и не буду упоминать его специально до главы 21, когда он снова станет важным.) Поэтому в тех пределах, докуда они простираются, эти нули подтверждают справедливость Гипотезы Римана. Однако простираются они не слишком далеко. Известным фактом про число нулей — неявно содержавшимся в работе Римана 1859 года — было то, что число их бесконечно. Все ли они имеют вещественную часть, равную одной второй? Риман полагал, что дело так и обстоит — в этом-то и состояла его мощная Гипотеза. Но в тот момент никто не знал, как к этому подступиться.

После появления списка Грама математики, должно быть, взирали на него со священным ужасом. Тайна распределения простых чисел, которая удерживала на себе внимание математиков со времен легендарного Гаусса, оказалась каким-то образом заключенной в перечне чисел: 1/ 2 + 14,134725 i, 1/ 2+ 21,022040 i, 1/ 2+ 25,010856 i, …. Но как?! Их вещественные части, без сомнения, равняются одной второй, как и предполагал Риман; однако мнимые части не проявляют никакого очевидного порядка или системы.

Перейти на страницу:

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука