Читаем Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. полностью

Но, как и в случае с дзета-функцией вещественных аргументов, для расширения области определения в те области, где бесконечная сумма не сходится, можно применить некоторые математические уловки. В результате получается полная дзета-функция, область определения которой составляют все комплексные числа за единственным исключением числа s = 1. Там, как мы еще в самом начале убедились при помощи колоды карт (см. главу 1), у дзета-функции нет значения. Везде, кроме этой точки, она имеет единственным образом определенное значение. Имеются, конечно, и такие места, где это значение нулевое. Это мы и раньше знали. Графики из главы 9.iv показывают, что дзета-функция принимает равное нулю значение для всех отрицательных четных чисел -2, -4, -8, …. Мы на них не останавливаемся, потому что, как уже было замечено, они не слишком важны. Это тривиальные нули дзета-функции. Могло ли бы так случиться, что значение дзета-функции равно нулю при некоторых комплексных аргументах? И что, это и будут нетривиальные нули, упоминаемые в Гипотезе? Делайте ваши ставки; но я несколько забежал вперед в нашей истории.


IV.

Сорок лет назад блестящий, но эксцентричный Теодор Эстерман [112]написал учебник, озаглавленный «Комплексные числа и функции», в котором содержались всего два рисунка. «Я <… > избежал всякого обращения к геометрической интуиции», — объявлял автор в предисловии. Известно некоторое число родственных ему душ, однако большая часть математиков не следует подходу Эстермана. Они трактуют теорию функций комплексной переменной в высшей степени визуально. Многие из нас полагают, что функции комплексной переменной легче освоить, пользуясь некоторыми наглядными образами.

Но как же можно наглядно представить себе функцию комплексной переменной? Возьмем простейшую нетривиальную функцию комплексной переменной — функцию возведения в квадрат. Есть ли какой-нибудь способ узнать, на что она похожа?

Скажем сразу: от обычных графиков толку здесь немного. В мире вещественных чисел можно изобразить функцию на графике таким образом: проводим прямую, изображающую аргументы (как мы помним, вещественные числа живут на прямой); затем проводим другую прямую под прямым углом к первой и используем ее для значений функции. Чтобы выразить тот факт, что данная функция превращает число xв число y, двигаемся на восток от нулевого аргумента на расстояние x(на запад, если xотрицательно), а затем на север от нулевого значения на расстояние y(на юг, если yотрицательно). Отмечаем там точку. Повторяем такое для стольких значений функции, сколько нам не лень вычислить. Это и дает график функции. На рисунке 13.1 приведен пример.

Рисунок 13.1.Функция x 2.

Однако это не годится для функций комплексной переменной. Аргументам требуется двумерная плоскость, чтобы на ней расположиться, а значениям функции нужна еще одна двумерная плоскость. Так что для графика требуются четыре пространственных измерения: два для аргументов и два для значений функции. (В четырехмерном пространстве, хотите верьте, хотите нет, две двумерные плоскости могут пересекаться в единственной точке. Это можно сравнить с тем фактом — совершенно недоступным для понимания обитателей двумерной вселенной, — что в трехмерии две непараллельные прямые не обязаны пересекаться.)

Это разочаровывает; но в качестве компенсации имеется кое-что, что можноделать для создания картинок, представляющих функции комплексной переменной. Вспомним то главное, что надо знать про функцию: она превращает одно число (аргумент) в другое (значение). Так вот, число-аргумент представляет собой точку где-то на комплексной плоскости, а значение функции представляет собой некоторую другую точку. Таким образом, функция комплексной переменной отправляет все точки из своей области определения в другие точки. Можно выбрать какие-то точки и посмотреть, куда они отправляются.

На рисунке 13.2, например, показаны числа, образующие стороны некоторого квадрата на комплексной плоскости. Углы отмены буквами a, b, cи d. Это в действительности комплексные числа -0,2 + 1,2 i, 0,8 + 1,2 i, 0,8 + 2,2 iи -0,2 + 2,2 i.

Рисунок 13.2.Функция z 2, примененная к квадрату.

Что с ними произойдет при применении функции возведения в квадрат? Если умножить число -0,2 + 1,2 iсамо на себя, то получится -1,4 - 0,48 i; значит, таково значение функции для точки a. Возведение в квадрат чисел, соответствующих точкам b, cи d, дает значения для всех остальных углов; эти значения отмечены как A, B, Cи D. Если повторить это для всех точек вдоль сторон квадрата, а также для точек, образующих сетку внутри него, получится искаженный квадрат, также изображенный на рисунке 13.2.


V.

Перейти на страницу:

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука