Читаем Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. полностью

Представим себе, что у муравья Арга есть брат-близнец, который живет на плоскости значений. {A4}Зовут его, понятно, муравей Знач. И допустим еще, что близнецы постоянно общаются между собой по рации и таким способом синхронизируют свои передвижения, так что, на каком бы аргументе ни находился муравей Арг в любой момент времени, муравей Знач стоит на соответствующем значении в плоскости значений. Если, например, муравей Арг стоит на числе 1/ 2+ 14,134725 i, а на его приборчике выставлена дзета-функция, то муравей Знач стоит на числе 0 в своей плоскости (плоскости значений).

Предположим теперь, что муравей Арг, вместо того чтобы ползать по всем этим причудливым завитушкам, изображенным на рисунке 13.6(что заставляет муравья Знача скучать, вышагивая взад и вперед по вещественной и мнимой осям), предпримет прогулку прямо по критической прямой, направляясь на север из аргумента 1/ 2. По какой траектории будет тогда следовать муравей Знач? Это показано на рисунке

13.8. Его путь начинается в точке ( 1/ 2), что, как мы видели в главе 9.v, равно -1,4603545088095…. Далее он описывает нечто вроде полуокружности против часовой стрелки ниже нулевой точки, а затем поворачивает и движется по петле по часовой стрелке вокруг точки 1. Он держит путь к нулю и проходит через него (это первый нуль — муравей Арг как раз прошел точку 1/ 2 + 14,134725 i). Затем он продолжает описывать петли по часовой стрелке, проходя через нулевую точку снова и снова через некоторый промежуток — всякий раз, как его брат-близнец наступает на нуль дзета-функции на плоскости аргумента. Я прервал путешествие Знача, когда муравей Арг достиг точки 1/ 2
+ 35 i, потому что рисунок 13.6продолжается лишь до этих пор. К тому моменту, как эта точка достигнута, кривая на плоскости значений прошла через нуль пять раз, что соответствует пяти нетривиальным нулям на рисунке 13.6. Отметим, что точки на критической прямой демонстрируют выраженную тенденцию к тому, чтобы отображаться в точки с положительной вещественной частью.

Рисунок 13.8.Плоскость значений; показаны точки, которые приходят из критической прямой.

Еще раз: на рисунке 13.8 показана плоскость значении. Это не диаграмма типа «отсюда», подобная рисункам 13.6и 13.7; наоборот, это диаграмма типа «сюда», которая показывает, что же дзета-функция делает с критической прямой, подобно тому как на рисунке 13.2было показано, что функция возведения в квадрат делаете расчерченным квадратиком. Если мы желаем выражаться чисто математически, то следует сказать, что завивающаяся в петли кривая на рисунке

13.8есть (критическая прямая) — множество всех точек, которые происходят из точек на критической прямой. Кривые на рисунках 13.6и 13.7суть -1(вещественная и мнимая оси) — множество всех точек, которые дзета-функция отправляет в вещественную и мнимую оси. Мы используем запись « (критическая прямая)», чтобы указать на «все значения дзета-функции при аргументах, лежащих на критической прямой». Наоборот, « -1(вещественная и мнимая оси)» означает «все аргументы, для которых значения дзета-функции лежат на вещественной или мнимой осях». Заметим, что выражение -1используется здесь в специальном смысле теории функций и указывает на обратную функцию. Не следует путать его с a
-1из 8-го правила действий со степенями, где имеется в виду 1 /a,арифметическое обратное числа a. Это другое использование — еще один пример перегрузки математических символов, как и с буквой , которая обозначает и число 3,14159…, и функцию числа простых чисел.

Вообще говоря, картинки типа «отсюда» на плоскости аргумента — предпочтительное средство для понимания того, что такое функция во всем охвате ее свойств (например, где расположены ее нули). Картинки «сюда» на плоскости значений полезнее всего для изучения конкретных аспектов или любопытных особенностей функции. [116]

Гипотеза Римана утверждает, что все нетривиальные нули дзета-функции лежат на критической прямой — прямой, составленной из комплексных чисел с вещественной частью одна вторая. Все нетривиальные нули, изображенные в этой главе, действительно лежат на этой прямой, что видно из рисунка 13.6, 13.7и 13.8. Конечно, это ничего не доказывает. У дзета-функции бесконечное число нетривиальных нулей, и никакой рисунок не позволит изобразить их все. Откуда нам знать, что триллионный нуль, или триллион триллионный, или же триллион триллион триллион триллион триллион триллионный лежит на критической прямой? Этого мы не знаем — во всяком случае, не можем заключить из картинок. А какое отношение все это имеет к простым числам? Чтобы ответить на этот вопрос, нам надо повернуть Золотой Ключ.

Глава 14. Во власти одержимости

I.

Перейти на страницу:

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука