Все это относится к анализу, т.е. к изучению пределов — того, как именно числовая последовательность может приближаться к некоторому предельному числу, никогда точно его не достигая. Когда говорится, что последовательность продолжается неограниченно, имеется в виду, что, сколько бы членов мы уже ни выписали, всегда можно написать следующий. Когда говорится, что последовательность имеет предел, равный
Традиционное деление на дисциплины внутри математики таково.
•
•
•
•
Кроме этого, в современной математике есть, конечно, много всего другого. Например, в ней есть теория множеств, созданная Георгом Кантором в 1874 году а есть «основания» — раздел, который в 1854 году усилиями англичанина Джорджа Буля отделился от классической логики и в котором исследуются логические основы всех математических концепций. Сами традиционные категории также разрослись и стали включать в себя целые новые темы — геометрия вобрала в себя топологию, алгебра — теорию игр и т.д. Еще до начала XIX века происходило значительное просачивание из одной области в другую. Например, тригонометрия (само слово было впервые употреблено в 1595 году) содержит в себе элементы и геометрии, и алгебры. В XVII веке Декарт арифметизировал и алгебраизировал значительную часть геометрии (правда, чисто геометрические доказательства в стиле Эвклида сохранили свою популярность до наших дней за их ясность, изящество и остроумие).
Как бы то ни было, четырехчленное деление сохраняет свою роль в качестве первоначальной ориентировки в математике. Эта классификация полезна и для понимания одного из величайших завоеваний математики XIX столетия, о котором мы далее будем говорить как о «великом соединении» — привязывании арифметики к анализу, что привело к созданию совершенно новой области исследований — аналитической теории чисел. Позвольте познакомить вас с человеком, который одной только публикацией статьи объемом в восемь с половиной страниц дал жизнь аналитической теории чисел, успешно развивающейся и поныне.
Глава 2. Почва и всходы
О Бернхарде Римане известно немного. Он не оставил никаких документов, позволяющих судить о его внутренней жизни, — за исключением того, что можно почерпнуть из его писем. Его современник и друг Рихард Дедекинд оказался единственным близким к Риману человеком, оставившим подробные воспоминания. Но и они занимают всего 17 страниц и проясняют не так много. Я не могу поэтому даже пытаться охватить в дальнейшем изложении всю личность Римана, но все-таки надеюсь, что читатель вынесет из этого рассказа нечто большее, чем просто имя. В данной главе описание научной деятельности Римана и всего, что с ней связано, сведено к минимуму; об этом мы поговорим более подробно в главе 8.
Сначала опишем время и место жизни нашего героя.