По завершении всех описанных этапов ученые получают организм, которого не существовало прежде: бактерию, несущую и экспрессирующую чужеродный ген. В 1973 году лаборатории Стэнли Коэна из Стэнфордского университета и Герберта Бойера из Калифорнийского университета в Сан-Франциско, работавшие над совместным проектом, объявили о первой успешной бактериальной трансформации3
. Вскоре стал очевиден потенциал этого открытия: бактерии можно превращать в микроскопические конвейеры, производящие не свойственные им вещества. Поскольку инсулин был самой привлекательной целью, несколько лабораторий вступили в биоинженерную гонку, стремясь как можно скорее сконструировать бактериальных продуцентов этого гормона.Группа Уолтера Гилберта из Гарвардского университета – того самого Гилберта, пионера секвенирования ДНК из главы 13, – получала ген инсулина из очищенной человеческой ДНК, но такой подход строго регламентировался. Из-за всеобщих опасений по поводу межвидового перемещения генов бурные дебаты в городском совете массачусетского Кембриджа, где находится Гарвардский университет, завершились введением моратория на все подобные работы. Один из членов совета позже сказал: «Я попытался разобраться в научной подоплеке, но пришел к выводу, что не способен дать обоснованную оценку риска. Когда я понял, что не могу решить, голосовать ли в пользу или против моратория, на научных основаниях, я обратился к политическим»4
. Он выступил за введение моратория.Тем временем в импровизированной лаборатории в нескольких километрах к югу от Сан-Франциско небольшой биотехнологический стартап вовсю использовал химически синтезированный инсулиновый ген, избегая нормативных и социальных коллизий, присущих работе с молекулами из человеческого организма. Атомное устройство нуклеотидов абсолютно идентично вне зависимости от способа их создания – молекула есть молекула, – но закон и общественность не всегда готовы это признать. Упомянутую молодую компанию,
Бактериальное производство инсулина проторило путь к биологическому получению лекарств от широкого спектра заболеваний. Сегодня объем рынка биологических препаратов медицинского назначения превышает 250 миллиардов долларов. Инсулин, как и многие другие вещества, теперь производят в основном генетически измененные дрожжи, а не бактерии6
. Дрожжи – тоже одноклеточные организмы, но они, как и мы, эукариоты. С дрожжами нас роднит целый ряд недоступных бактериям механизмов модификации белков. Инсулин синтезируется в нашей поджелудочной железе как единая аминокислотная цепь (см. главу 2), которая впоследствии разрезается на три части; две крайних части объединяются мостиком новой химической связи, а средняя выпадает. Бактерии не способны к таким химическим операциям, поэтому исследователи изЧтобы научиться внедрять гены в эукариотические клетки, потребовались дальнейшие исследования и изобретения. Лишь немногие из эукариот имеют плазмиды, и эукариотические гены, как правило, встраивают в хромосомы, чтобы они надежно экспрессировались в составе общего генома. (Такой вариант модификации иногда предпочитают и в бактериальной инженерии: внедрение нужного гена в хромосому бактерии дает больше гарантий на его сохранение, поскольку плазмиды могут теряться при клеточных делениях.) Методы модификации эукариотических геномов развивают уже не один десяток лет, однако до недавнего времени они были неэффективными, неточными и трудоемкими. Все радикально изменилось лишь с появлением системы CRISPR/Cas9, поэтому я не стану подробно разбирать другие подходы, а ограничусь лишь общим обзором их тактики и примеров, где приложение таких усилий может быть оправданным.