Читаем Простое начало. Как четыре закона физики формируют живой мир полностью

Если представить эукариотический геном как огромную библиотеку с закрытым фондом – вроде Библиотеки Конгресса или частного собрания, – то наша задача состоит в том, чтобы как-то втиснуть на полку новую книгу. Мы могли бы оставить ее в общественном зале, но библиотекарь вряд ли отнесет ее на полку за дверью: эукариотические клетки не поглощают и не встраивают в свои геномы случайные обрывки ДНК. Наши шансы увеличиваются, когда библиотеку ремонтируют или перевозят на новое место, поскольку в суматохе нашу книгу могут подложить к остальным. Такую возможность предоставляют только что оплодотворенные яйцеклетки, пока в них не объединились родительские хромосомы. Если микроинъекцией ввести молекулы ДНК в формирующийся зародыш, они могут встроиться в геном7. Сразу после разработки эта техника редко оказывалась успешной и позволяла внедрять фрагмент ДНК лишь в случайные места генома, ставя под угрозу целостность генов. Дальнейшие усовершенствования повысили ее эффективность и даже привнесли во внедрение ДНК некоторую степень прицельности (таргетированности). Сейчас это стандартный метод создания трансгенных мышей, например, с генами флуоресцентных белков для слежения за клеточными функциями (см. главу 2).

Другой вариант решения библиотечной задачи – привлечь кого-то, кому будет легче проникнуть в библиотеку, – например, профессионального взломщика. Мы часто прибегаем к помощи вирусов. Вирусы запускают свои геномы в клетки и реплицируют их там либо в виде независимых молекул, либо в составе генома хозяина. Маленькие и проворные вирусы не склонны брать дополнительный груз, но немного лишнего генетического материала в них все же можно втиснуть, и тогда модифицированные вирусные частицы доставят его в клетки заражаемого организма. Вирусная доставка ДНК имеет преимущества перед микроинъекцией, поскольку все делает сам вирус, а не лаборант с тонкой иглой, и работать можно с разными типами клеток, а не только со свежеоплодотворенной яйцеклеткой. Но у этих методов сходные недостатки: они не особенно надежны и таргетны, то есть избирательность встраивания привнесенной вирусом ДНК невысока. Когда мы создаем трансгенных мышей, нам неважно, что доля успешных процедур далека от идеала. Мы проводим отбор и дальше изучаем только правильно трансформированных мышей. Но если мы хотим разработать лекарственный препарат для человека, наши требования к надежности и точности сильно ужесточаются.

Бактерии – даже те немногие из них, которые могут проникать в другие клетки и причинять им вред, – обычно не изменяют геномы эукариот. Но есть и редкие исключения. Почвенный микроб Agrobacterium tumefaciens заражает корни растений, когда у него появляется такая возможность. Эта бактерия отрезает особый фрагмент своей плазмидной ДНК (Т-ДНК) и вводит его в растительную клетку вместе с белками, которые направляют Т-ДНК в ядро и вынуждают растение задействовать механизм репарации (починки) ДНК, чтобы внедрить бактериального засланца в свой геном. В итоге синтезируются закодированные в Т-ДНК вещества, провоцирующие опухолеобразование на корнях и питающие бактерий8. Ученые создали модифицированную агробактерию, в которой опухолеродные гены можно заменять любыми допустимыми по размеру ДНК-фрагментами, превращая вредоносный организм в мощный и безопасный инструмент доставки генов в клетки растений.

Один из самых интересных примеров доставки ДНК с помощью Agrobacterium – генетическая модификация риса для борьбы с дефицитом витамина A. Недостаток этого витамина считается главной предотвратимой причиной детской слепоты: ежегодно он отбирает зрение у 250–500 тысяч детей9. Почти половина этих детей умирает в течение года после потери зрения, что становится трагическим подтверждением важности витамина A для здоровья в целом. Наш организм получает витамин A из некоторых продуктов животного происхождения и производит из разных предшественников, в том числе из бета-каротина, который придает оранжевый цвет овощам вроде моркови и батата. Бета-каротина, однако, нет в рисе, который благодаря своей дешевизне и обилию на рынке служит основным продуктом питания во многих регионах, где распространен дефицит витамина А. Побеги риса вообще-то способны производить бета-каротин: он синтезируется в листьях, где участвует в фотосинтезе. Но соответствующие гены не экспрессируются в крахмалистых зернах, которые мы как раз и едим.

Перейти на страницу:

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука