1 de Chadarevian S. John Kendrew and myoglobin: Protein structure determination in the
1950s. Protein Science. 2018; 27: 1136–1143. Об истории рентгеновской кристаллографии: Brooks-Bartlett J. C., Garman E. F. The Nobel science: One hundred years of crystallography. Interdisciplinary Science Reviews. 2015; 40: 244–264; Jaskolski M. et al. A brief history of macromolecular crystallography, illustrated by a family tree and its Nobel fruits. FEBS Journal. 2014; 281: 3985–4009.2 Изображение белка GFP основано на структуре 1EMA из Protein Data Bank: https:
//www.rcsb.org/structure/1EMA; Ormo M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science. 1996; 273: 1392–1395.3 Day R. N., Davidson M. W. The fluorescent protein palette: Tools for cellular imaging.
Chem. Soc. Rev. 2009; 38: 2887–2921; Rodriguez E. A. et al. The growing and glowing toolbox of fluorescent and photoactive proteins. Trends in Biochemical Sciences. 2017; 42: 111–129; Shaner N. C. The mFruit collection of monomeric fluorescent proteins. Clin. Chem. 2013; 59: 440–441.4 О структуре калиевых каналов: Kuang Q. et al. Structure of potassium channels.
Cell Mol. Life Sci. 2015; 72: 3677–3693.5 Изображение кинезина основано на структуре белка 1N6M из Protein Data Bank: https:
//www.rcsb.org/structure/1N6M; Yun M. et al. Rotation of the stalk/neck and one head in a new crystal structure of the kinesin motor protein. Ncd. EMBO Journal. 2003; 22: 5382–5389.6 Изображение глюкокортикоидного рецептора основано на структуре белка 1R4O из Protein Data Bank: https:
//www.rcsb.org/structure/1R4O; Luisi B. F. et al. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature. 1991; 352: 497–505.7 Hartl F. U., Hayer-Hartl M. Molecular chaperones in the cytosol: From nascent chain to folded protein.
Science. 2002; 295: 1852–1858.9 Ducrot C. et al. BSE risk and the use of meat and bone meal in the feed industry: Perspectives in the context of relaxing control measures.
Natures Sciences Societes. 2013; 21: 3–12.10 Richards F. M. The protein folding problem.
Scientific American. 1992; 264: 54–63; Dill K. A., MacCallum J. L. The protein-folding problem, 50 years on. Science. 2012; 338: 1042–1046.11 Elliot A., David E. Shaw's supercomputer is uncovering secrets of human biology.
Columbia Engineering. 2017; April 7 (https://engineering.columbia.edu/news/engineering-icons-david-shaw).12 Folding@home
– боремся с болезнями с помощью глобально распределенного суперкомпьютера. https://foldingathome.org/; Greene K. Folding@home takes to the lab. Science. 2002; October 21 (https://www.sciencemag.org/news/2002/10/foldinghome-takes-lab).13 Cooper S. et al. Predicting protein structures with a multiplayer online game
. Nature. 2010; 466: 756–760.14 Service R. F. «The game has changed.» AI triumphs at protein folding.
Science. 2020; 370: 1144–1145.
Глава 3. Гены и механика ДНК
1 Deeb S. S. The molecular basis of variation in human color vision.
Clin. Genet. 2005; 67: 369–377; Color vision deficiency. MedlinePlus. 2020 (https://medlineplus.gov/genetics/condition/color-vision-deficiency/).