12 Evilevitch A. et al. Osmotic pressure inhibition of DNA ejection from phage.
Proc. Natl. Acad. Sci. 2003; 100: 9292–9295; Gelbart W. M., Knobler C. M. Virology: Pressurized viruses. Science. 2009; 323: 1682–1683.
Глава 4. Хореография генов
1 Изображение lac
-репрессора, прикрепленного к ДНК, основано на структуре белков 1EFA и 1TLF из Protein Data Bank и на комбинированной иллюстрации Дэвида Гудселла: https://www.rcsb.org/structure/1EFA; https://www.rcsb.org/structure/TLF; Goodsell D. Molecule of the Month: lac Repressor. PDB-101. 2003 (http://pdb101.rcsb.org/motm/39); Bell C. E., Lewis M. A closer view of the conformation of the lac repressor bound to operator. Nat. Struct. Biol. 2000; 7: 209–214.2 Schleif R. DNA Looping.
Annual Review of Biochemistry. 1992; 61: 199–223.3 Voros Z. et al. Proteins mediating DNA loops effectively block transcription.
Protein Sci. 2017; 26: 1427–1438; Becker N. A. et al. Mechanism of promoter repression by lac repressor-DNA loops. Nucleic Acids Res. 2013; 41: 156–166.4 История изучения генетической регуляции описана в Morange M. A History of Molecular Biology.
Cambridge, MA: Harvard University Press, 2000.5 Lambert S. A., et al. The human transcription factors.
Cell. 2018; 172: 650–665.6 Schoenfelder S., Fraser P. Long-range enhancer – promoter contacts in gene expression control.
Nature Reviews Genetics. 2019; 20: 437–455.7 Cronin C. A. et al. The lac operator-repressor system is functional in the mouse.
Genes Dev. 2001; 15: 1506–1517.8 О памяти, часах и других генетических схемах: Nelson P. C. Physical Models of Living Systems.
W. H. Freeman, 2015; Alon U. An Introduction to Systems Biology: Design Principles of Biological Circuits. Boca Raton, FL: CRC Press, 2007. О циркадном ритме и его клеточных часах: Brown S. A. et al. (Re)inventing the circadian feedback loop. Dev. Cell. 2012; 22: 477–487; Maywood E. S. et al. Analysis of core circadian feedback loop in suprachiasmatic nucleus of mCry1-luc transgenic reporter mouse. Proc. Natl. Acad. Sci. 2013; 110: 9547–9552; Pett J. P. et al. Feedback loops of the mammalian circadian clock constitute repressilator. PLOS Comput. Biol. 2016; 12: e1005266.9 Elowitz M. B., Leibler S. A synthetic oscillatory network of transcriptional regulators.
Nature. 2000; 403: 335–338.10 Stricker J. et al. A fast, robust and tunable synthetic gene oscillator.
Nature. 2008; 456: 516–519.11 Lawrence M. et al. Lateral thinking: How histone modifications regulate gene expression.
Trends in Genetics. 2016; 32: 42–56; Ho L., Crabtree G. R. Chromatin remodelling during development. Nature. 2010; 463: 474–484.12 Allis C. D., Jenuwein T. The molecular hallmarks of epigenetic control.
Nature Reviews Genetics. 2016; 17: 487–500; Boskoviс? A., Rando O. J. Transgenerational epigenetic inheritance. Annual Review of Genetics. 2018; 52: 21–41; Heijmans B. T. et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. PNAS. 2008; 105: 17046–17049.13 Painter R. C. et al. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life.
BJOG: An International Journal of Obstetrics & Gynaecology. 2008; 115: 1243–1249; Veenendaal M. V. E. et al. Transgenerational effects of prenatal exposure to the 1944–45 Dutch famine. BJOG: An International Journal of Obstetrics & Gynaecology. 2013; 120: 548–554.
Глава 5. Мембраны: жидкая кожа