3 Nusslein-Volhard C., Wieschaus E. Mutations affecting segment number and polarity in Drosophila
. Nature. 1980; 287: 795–801; Haskett D. R. Hedgehog signaling pathway. Embryo Project Encyclopedia. 2015 (http://embryo.asu.edu/handle/10776/8685).4 Изображение белка Hedgehog мушки Drosophila melanogaster
основано на структуре 2IBG из Protein Data Bank: https://www.rcsb.org/structure/2IBG; McLellan J. S. et al. Structure of a heparin-dependent complex of hedgehog and ihog. Proc. Natl. Acad. Sci. 2006; 103: 17208–17213. Изображение человеческого белка Sonic hedgehog основано на структуре 3MXW из Protein Data Bank: https://www.rcsb.org/structure/3MXW; Maun H. R. et al. Hedgehog pathway antagonist 5E1 binds hedgehog at the pseudo-active site. J. Biol. Chem. 2010; 285: 26570–26580.5 Towers M. et al. Insights into bird wing evolution and digit specification from polarizing region fate maps.
Nature Communications. 2011; 2: 426.6 Tarazona O. A. et al. Evolution of limb development in cephalopod mollusks.
eLife. 2019; 8: e43828.7 Kim S. et al. Epigenetic regulation of mammalian hedgehog signaling to the stroma determines the molecular suptype of bladder cancer
. eLife. 2019; 8: e43024.8 Turing A. The chemical basis of morphogenesis
. Philosophical Transactions of the Royal Society London, B: Biological Sciences. 1952; 237: 37–72.9 Forrest K. M., Gavis E. R. Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila
. Current Biology. 2003; 13: 1159–1168; Lucas T. et al. 3 minutes to precisely measure morphogen concentration. PLOS Genetics. 2018; 14: e1007676.10 Ilsley G. R. et al. Cellular resolution models for even skipped regulation in the entire Drosophila embryo.
eLife. 2013; 2: e00522; Petkova M. D. et al. Optimal decoding of cellular identities in a genetic network. Cell. 2019; 176: 844–855.e15.11 Dubuis J. O. et al. Positional information, in bits
. Proc. Natl. Acad. Sci. 2013; 110: 16301–16308.12 Eddison M. et al. Notch signaling in the development of the inner ear: Lessons from Drosophila.
Proc. Natl. Acad. Sci. 2000; 97: 11692–11699.13 Doe C. Q., Goodman C. S. Early events in insect neurogenesis: II. The role of cell interactions and cell lineage in the determination of neuronal precursor cells.
Developmental Biology. 1985; 111: 206–219.14 Об открытии роли латерального торможения в структурировании развивающегося организма см. Bussell K. Milestone
3 (1937): Inhibit thy neighbour. Nat. Rev. Neurosci. 2004. О белке Notch, его расщеплении и роли в клеточной сигнализации и в латеральном торможении: Gordon W. R. et al. The molecular logic of Notch signaling – a structural and biochemical perspective. Journal of Cell Science. 2008; 121: 3109–3119; Sjoqvist M., Andersson E. R. Do as I say, Not (ch) as I do: Lateral control of cell fate. Developmental Biology. 2019; 447: 58–70.15 Gomez C. et al. Control of segment number in vertebrate embryos.
Nature. 2008; 454: 335–339.16 Cooke J., Zeeman E. C. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis
. J. Theor. Biol. 1976; 58: 455–476.