4 Culliton B. J. Recombinant DNA: Cambridge City Council votes moratorium
. Science. 1976; 193: 300–301.5 Hughes S. S. Genentech: The Beginnings of Biotech (reprint ed.).
Chicago: University of Chicago Press, 2013; Mukherjee S. The Gene: An Intimate History. New York: Scribner, 2016.6 Nielsen J. Production of biopharmaceutical proteins by yeast.
Bioengineered. 2013; 4: 207–211.7 Behringer R. et al. Manipulating the Mouse Embryo: A Laboratory Manual (
4th ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2013.8 Tzfira T., et al. Agrobacterium T-DNA integration: Molecules and models
. Trends in Genetics 20, 375–383 (2004).9 Micronutrient deficiencies: Vitamin A deficiency.
World Health Organization. 2009 (https://www.who.int/data/nutrition/nlis/info/vitamin-a-deficiency).10 Ye X. et al. Engineering the provitamin A (
b-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science. 2000; 287: 303–305.11 Researchers determine that golden rice is an effective source of vitamin A
. American Society of Nutrition. 2009 (http://www.goldenrice.org/PDFs/ASNonGR.pdf); Tang G. et al. Golden rice is an effective source of vitamin A. Am. J. Clin. Nutr. 2009; 89: 1776–1783. Массу информации о золотом рисе, в том числе подробное описание его генетики и результаты его проверки на безопасность, можно найти в Golden Rice Humanitarian Board. Golden Rice Project (http://www.goldenrice.org/).12 Regis E. Golden Rice: The Imperiled Birth of a GMO Superfood
. Baltimore: Johns Hopkins University Press, 2019; Regis E. The true story of the genetically modified superfood that almost saved millions. Foreign Policy. 2019; October 17 (https://foreignpolicy.com/2019/10/17/golden-rice-genetically-modified-superfood-almost-saved-millions/).13 Stokstad E. After
20 years, golden rice nears approval. Science. 2019; 366: 934–934.14 Gaj T. et al. ZFN, TALEN, and CRISPR
/Cas-based methods for genome engineering. Trends in Biotechnology. 2013; 31: 397–405.15 Ishino Y. et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product
. Journal of Bacteriology. 1987; 169: 5429–5433.16 Mojica F. J. M. et al. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites
. Molecular Microbiology. 1993; 9: 613–621.17 Mojica F. J. M. et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
. J. Mol. Evol. 2005; 60: 174–182; Pourcel C. et al. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 2005; 151: 653–663; Bolotin A. et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. 2005; 151: 2551–2561.18 Ledford H. Five big mysteries about CRISPR's origins
. Nature News. 2017; 541: 280; Sorek R. et al. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annual Review of Biochemistry. 2013; 82: 237–266.