Читаем Простое начало. Как четыре закона физики формируют живой мир полностью

Помимо lac-системы существует множество других, позволяющих организмам – или ученым – регулировать экспрессию генов. Подобные конструкции в ходу и в моей лаборатории. Только мы не меняем цвет мышиной шерсти, а включаем и отключаем способность некоторых бактерий плавать: добавляя в воду простой реагент, мы побуждаем их собирать или разбирать свои микроскопические моторы. Этот инструмент дает нам возможность оценить, насколько плавание помогает бактериям преуспевать в их среде. Всего за несколько десятилетий такая работа перетекла из области научной фантастики в реальность и продолжает упрощаться дальше.

Генетическая память

Если вы нажмете на выключатель, чтобы зажечь свет, вам не нужно будет удерживать палец на кнопке, чтобы лампа не погасла. Выключатель зафиксируется в новом стабильном положении и останется в нем, пока его не зафиксируют в другом, тоже стабильном. Природа и ученые тоже часто прибегают к подобным рубильникам: они направляют клетки на определенный путь при получении сигнала и не дают им свернуть с него, даже если сигнал пропал. У растений и животных это особенно важно для развития клеток разных типов. Так, и нейроны, и глия, которая помогает нейронам функционировать, берут начало от общей клетки-предшественницы. Специфические сигналы направляют ее на путь формирования нейрона, после чего она обречена экспрессировать соответствующий набор генов, создавать синапсы с другими клетками и выполнять все остальные задачи, возложенные на нейрон. Наверняка вам не хотелось бы постоянно уведомлять нейрон, что не стоит ему возвращаться к предковой форме, равно как и обращаться в глию либо нейронно-глиальную несуразицу. Чтобы тип клетки не менялся, генам нужны тумблеры. Иными словами, клеткам нужна память: они должны запоминать воспринятые когда-то стимулы, перекодируя их в схемы экспрессии генов, стабильные в настоящем и будущем.

Способов создать воспоминание много. Есть и такой, который основан на знакомом нам действии факторов транскрипции. Представьте два гена, A и B. Как и в случае с lac, у гена А есть репрессор. Теперь допустим, что ген этого репрессора находится сразу за геном B по ходу транскрипции, поэтому, если экспрессируется B, то экспрессируется и он. Представьте, что ниже A по ходу транскрипции, подобно гену репрессора А, находится ген репрессора B, и если экспрессируется А, экспрессируется и этот ген. Такая взаимная репрессия обеспечивает работу памяти. Допустим, A экспрессируется сильно. Клетка производит много репрессора гена B, поэтому B подавляется, в отличие от А (репрессор гена А не считывается из-за совместной с В репрессии), что соответствует сильной экспрессии А. Клетка продолжает существовать в состоянии А. С другой стороны, если сильно экспрессируется B, события развиваются противоположным образом и клетка продолжает существовать в состоянии B. У этой клетки два стабильных типа поведения. Мы можем переключиться между ними, например, наводнив клетку множеством сигналов активации или репрессии какого-то из этих генов. Если в регуляторном аппарате задействован lac-репрессор, то таким сигналом может быть ИПТГ. С этого момента клетка будет хранить воспоминание о произошедшем событии.

Здесь проиллюстрирован общий принцип, который заключается в том, что гены регулируют экспрессию генов. Иными словами, обратная связь между генами формирует те или иные паттерны активности. В нашем примере тумблером служили два варианта репрессии (отрицательная обратная связь). И это не гипотетическая история: такая схема часто работает в живой природе: например, заразившие бактерию вирусы вынуждены выбирать между состояниями активного размножения и «спячки». Но немало и других эффективных схем. Мы можем, например, совместно экспрессировать ген А и ген его активатора, усиливая результат стимуляции, изначально направившей клетку на путь А (положительная обратная связь).

Часы и схемы

Мы узнаем время по часам. В основе конструкции любых часов лежит какой-то периодический, ритмический феномен вроде колебаний маятника или частых вибраций кварцевого кристалла. Все живые организмы и даже отдельные клетки используют часы, чтобы контролировать активность, которая должна усиливаться и ослабевать с определенной периодичностью. Прекрасный пример – циркадные ритмы8. У многих растений выработка хлорофилла организована примерно в 24-часовом цикле, что соответствует длительности суток. Растение ориентируется не только на внешние сигналы, которые непостоянны из-за теней и облаков, но и на внутренний механизм отсчета времени с 24-часовым периодом. Он есть и у людей: температура тела, кровяное давление и, разумеется, сонливость повышаются и снижаются у вас примерно раз в сутки, даже если вы неделями сидите в комнате с неизменной освещенностью. Циркадные часы есть у животных, грибов и даже некоторых бактерий. Восприятие света помогает поддерживать ритм и сдвигает моменты пиков и минимумов, но сама периодичность обусловлена внутренними осцилляторами.

Перейти на страницу:

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука