Читаем Простое начало. Как четыре закона физики формируют живой мир полностью

Невозможно постичь ДНК, не разобравшись в ее физических характеристиках. Форма, структура и механика неразрывно связаны с биологической функцией. Это утверждение верно не только для ДНК, но и для всех биомолекул в природе – биофизика постоянно имеет дело с такими зависимостями. В следующей главе мы вернемся к вопросу о том, как удивительно малое число генов может управлять процессами, которые делают вас вами, и узнаем, как гены включаются и выключаются – под действием внешних факторов или других генов, – создавая сеть взаимодействий, опять же неотделимую от осязаемых, физических проявлений молекул жизни.

Глава 4. Хореография генов

В третьей главе мы сформулировали основную загадку наследственной информации: как какие-то 20 тысяч генов кодируют вас во всей вашей сложности? Как всего 20 тысяч белков – 20 тысяч инструментов или 20 тысяч компонентов – выполняют головокружительное количество задач, решаемых вами: от роста и дыхания до чтения и воспроизводства? Разумеется, это антропоцентричная формулировка вопросов, и точно так же мы могли бы спросить, как это 20 тысяч генов делают лошадь лошадью, а 30 тысяч создают дафнию.

Мы далеки от исчерпывающего ответа на любой из этих вопросов, и ученым будет чем заняться еще десятки, если не сотни лет. Однако мы открыли любопытные общие принципы и закономерности кодирования жизни во всей ее сложности и даже начали применять их для конструирования организмов неслыханными способами. В предыдущей главе мы рассматривали гены в относительной статике – упакованными в пространство клетки и потенциально способными руководить сборкой белков. Теперь мы вводим фактор времени – стимуляцию и подавление преобразования генетической информации в физическую активность в зависимости от нужд динамичных живых существ. Этой хореографией генов в значительной степени управляют сами гены. Прежде мы рассматривали самосборку в вещественном, структурном смысле. Здесь мы встретимся с более абстрактным ее проявлением, в рамках которого молекулярные функции вплетаются в регуляторные сети, превращающие любой организм в биологический компьютер. Чтобы понять все это, начнем с рассмотрения включения и выключения генов.

Регуляция работы генов

И клетка, и целый организм могут контролировать, когда и нужно ли вообще активировать любой из их генов – иными словами, стоит ли в тот или иной момент переводить его последовательность A, Ц, Г и T в последовательность нуклеотидов РНК, а затем в белок. Механизмы контроля подвергаются влиянию условий среды, в которой пребывает клетка или организм, и могут отвечать активацией или инактивацией соответствующих генов. Даже не понимая пока деталей регуляции, вы можете догадываться, что избирательность здесь просто необходима, ведь ваше тело состоит из очень разных клеток, обладающих одинаковыми копиями ДНК. Геномы нейронов, клеток кожи и, скажем, секреторных клеток выстилки вашего кишечника идентичны. Но эти клетки выглядят по-разному, выполняют разные функции и производят разные наборы белков. Гены белков, участвующих в выработке слизи, не должны работать в нейронах; гены белков, прочно скрепляющих соседние клетки, должны быть активны в коже; секреторные клетки должны игнорировать гены, отвечающие за отправку электрических сигналов на большие расстояния. Следовательно, нам необходимы механизмы избирательного «включения» и «выключения» генов. Давайте узнаем, как реализуется такой контроль.

Вспомним, как происходит транскрипция. Фермент РНК-полимераза движется по ДНК, как поезд по рельсам, и копирует нуклеотидную последовательность гена с ее начала до стоп-сигнала, формируя нить РНК. Но РНК-полимераза не привязана к ДНК. Значительную времени она плавает в жидкой среде поблизости и прицепляется к ДНК, только если случайно натыкается на специфическое сочетание нуклеотидов. Как мы узнали из третьей главы, такие сочетания – промоторы – примыкают к генам или группам генов. ДНК обладает полярностью, и РНК-полимераза, считывающая одну из нитей двойной спирали ДНК, движется в заданном направлении. Ген (его кодирующая часть) расположен ниже своего промотора по ходу транскрипции, и полимераза, «севшая» на промоторную последовательность, в итоге транскрибирует примыкающие к ней гены. Управление посадкой РНК-полимеразы обеспечивает регуляцию транскрипции генов – один из самых действенных способов контролировать их активность.

Раньше всего мы изучили механизмы регуляции транскрипции у бактерий. Представьте, что вы бактерия. Вам нравится питаться сахарами, но для этого нужны расщепляющие сахар белки. Вы предпочли бы вырабатывать больше таких белков, только когда встречаете сахар, и не расходовать энергию впустую, когда сахара рядом нет. Как этого добиться? В качестве примера рассмотрим реальный сахар, лактозу, и регуляторный механизм бактерии Escherichia coli, довольно типичный для живой природы[26].

Перейти на страницу:

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука