В последние два десятилетия ученые выяснили, что факторы, определяющие, какие области генома наматываются на гистоны, заложены в самой последовательности ДНК и отчасти обусловлены механическими свойствами двойной спирали11
. Как мы знаем, длина относительно прямых сегментов ДНК составляет около 100 нанометров. Показатель жесткости в некоторой степени зависит от последовательности нуклеотидов, то есть «букв» A, Ц, Г, T. Одни группы нуклеотидов обладают меньшей жесткостью, чем другие, или в силу своей формы склоняют цепь к легкому изгибу. В той ДНК, которая в итоге оказывается в составе нуклеосом[25], эти более изогнутые или гибкие области, как маленькие шарниры, обычно располагаются через 10 нуклеотидов друг от друга. Длина витка двойной спирали тоже составляет 10 нуклеотидов: поднимись вы по винтовой лестнице ДНК на 10 ступенек, окажетесь лицом в ту же сторону, что и в исходной точке. Это значит, что все шарниры ориентированы в одном направлении и каждый фрагмент ДНК загибается к гистонной катушке. Анализ связывания ДНК с гистонами показывает, что последовательности без таких повторяющихся нуклеотидных пар реже оказываются намотанными. Таким образом, сама нуклеотидная последовательность кодирует механическую информацию о том, как именно она должна быть упакована. ДНК – молекула поистине экстраординарная, искусно совмещающая кодирование и механической, и биохимической, и генетической информации!Архитектура нуклеосом и волокон ДНК вводит нас в обширную тему регуляторных схем, с помощью которых клетки контролируют свою активность, включая и выключая гены. В четвертой главе мы познакомимся с другими стратегиями принятия решений, реализуемыми по более быстрым и сложным схемам.
Задачу по ужатию ДНК в ограниченном пространстве решают не только
У вируса с двухцепочечной ДНК изогнутый, стиснутый полимер давит на капсид, пытаясь расправиться. Когда капсид открывается – например, в момент заражения клетки, – это внутреннее давление помогает протолкнуть ДНК в клетку-мишень. Можно ли измерить давление сжатой ДНК? Представьте, как закрытый капсид открывается и ДНК вырывается наружу. Теперь представьте, как капсид сжимается со всех сторон под внешним давлением и
Представить описанное несложно, однако на практике не обойтись без хитроумных трюков, один из которых около 15 лет назад применила команда Уильяма Гелбарта из Калифорнийского университета в Лос-Анджелесе. Естественное открытие капсида запускается, когда вирус встречается с особыми белками на поверхности клетки-мишени. Добавляя эти белки в пробирку с вирусными частицами, открывать капсиды можно «по требованию». Вирионы рассеяны в водном растворе. При добавлении в раствор крупных молекул растет