Читаем Простое начало. Как четыре закона физики формируют живой мир полностью

В начале XIX века 30 % смертей в Лондоне вызывал туберкулез4, инфекционное заболевание, которое чаще всего поражает легкие. «Белая чума» поражала и убивала множество людей по всему миру и в первые полтора десятилетия XX века по-прежнему не покидала две верхние строки в списке главных причин смерти в США5. Даже сейчас от туберкулеза умирает около миллиона человек в год6. Эту болезнь вызывает бактерия Mycobacterium tuberculosis. Другая микобактерия, Mycobacterium leprae, вызывает лепру, или проказу, еще один бич человечества, тысячелетиями разъедавший кожу и нервную систему своих жертв, пока не появились современные антибиотики. Микобактерии отличаются потрясающей живучестью. Уже лет 100 мы знаем, например, что M. leprae и M. tuberculosis могут многими месяцами обходиться без воды7. Это озадачивает не только потому, что биохимическая активность клетки немыслима без воды. Если гидрофильные головки липидов не контактируют с водой, то как гидрофильным и гидрофобным взаимодействиям сохранять целостность мембраны и как мембране сохранять целостность бактерии?

Оказывается, у микобактерий очень странные мембраны. Как и у клеток всех остальных организмов, их внутренности ограничены липидным бислоем. Однако снаружи этот бислой покрыт густым гидрофобным гелем, над которым находится еще и монослой липидов, маслянистые хвосты которых направлены внутрь, а гидрофильные головки – наружу. Необычно здесь не только расположение липидов, но и их устройство: у многих молекул к гидрофильным головкам прикреплен сахар трегалоза (на рисунке на него указывает стрелка). Насколько мы знаем, микобактерии и некоторые их близкие родственники – единственные на планете организмы, наделенные трегалозными липидами. Но так ли это важно?



Я узнал об этих микобактериальных мембранах лет десять назад, вскоре после того, как основал свою исследовательскую лабораторию в Орегонском университете. К тому времени я уже несколько лет работал с липидными бислоями, в основном измеряя их жесткость и прочие физические свойства, чтобы понять, на что способны эти материалы. Экспериментируя с сахарами и полимерами, я скооперировался с группой химика Каролин Бертоцци, которая тогда работала в Калифорнийском университете в Беркли. По совпадению они тогда интенсивно изучали, как микобактерии создают трегалозные липиды и другие странные молекулы: группа Бертоцци хотела разобраться в выдуманных природой химических инструментах и научиться выводить их из строя, чтобы побеждать болезни. Именно в ходе этого сотрудничества я впервые услышал о трегалозных липидах и сразу же заинтересовался ими, поскольку трегалоза в иных контекстах слыла чуть ли не волшебным сахаром.

Лишь небольшое число организмов, включая некоторые грибы, растения и даже отдельных животных, способны пережить потерю 99 % воды. Так, «воскресающее растение» плаунок чешуелистный (Selaginella lepidophylla) годами выдерживает почти полную дегидратацию, сворачиваясь в плотный коричневатый шарик, который при поступлении воды «оживает», расправляясь в обычную зеленую розетку листьев. У многих из этих организмов есть кое-что общее: они производят трегалозу, часто в огромных количествах. В сравнении с сахарами вроде знакомых нам глюкозы или сахарозы трегалоза менее склонна кристаллизоваться с ростом концентрации, благодаря чему ее молекулам проще взаимодействовать с другими веществами. Кроме того, трегалоза легко формирует водородные связи – те, что скрепляют молекулы воды друг с другом и с разными гидрофильными молекулами: это позволяет сахару в некоторой степени имитировать воду. Но трегалоза, в отличие от воды, не склонна к испарению. Считается, что все эти свойства делают трегалозу фактором устойчивости к иссушению, и ученые ищут способы использовать ее вне организма – чтобы хранить и транспортировать в высушенном состоянии вакцины и биоматериалы типа клеток крови и ценных белков8. Я задумался: а не приспособили ли микобактерии трегалозный инструментарий в связке с липидами для защиты своей клеточной оболочки от обезвоживания? И как же проверить эту гипотезу?

Перейти на страницу:

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука