Нельзя было просто отключить у микробов производство трегалозных липидов, а затем проверять их на прочность: о подобных биохимических механизмах микобактерий мы знаем слишком мало, чтобы их менять. Но даже если бы это было в наших силах, я не горел желанием держать в лаборатории возбудителя туберкулеза. (Как мы позже узнаем, моя группа с удовольствием работала с холерными вибрионами, но холеру легко предупредить, сложно подхватить, просто излечить – в отличие от туберкулеза.) Я выбрал другой подход, который уже десятки лет успешно работал с «нормальными» липидными бислоями: воссоздание искусственных бесклеточных мембран на твердых поверхностях. Обычные липиды можно подтолкнуть к формированию бислоев на очень чистых и ровных стеклах. В силу гидрофильности стекла и липидных головок их разделяет водная прослойка толщиной 1–2 нанометра, позволяя бислою сохранять двумерную текучесть. Нам приходится жертвовать долей реализма целостной клеточной мембраны, зато мы получаем удобную контролируемую платформу для изучения биофизики липидного бислоя.
Мы решили попробовать сконструировать аналогичную мембранную платформу, чтобы имитировать небислойную организацию липидов у
На базе такой платформы мы могли дегидратировать и регидратировать полученную мембрану. Как и ожидалось, монослои исключительно из «обычных» липидов не выживали при высушивании. Зато монослои, почти полностью состоящие из микобактериальных трегалозных липидов, после дегидратации и регидратации оставались невредимыми и даже сохраняли текучесть. Но примечательнее было то, что монослои из смеси обычных и трегалозных липидов выдерживали обезвоживание, пока содержание трегалозных форм в них не падало ниже 25 %. Иными словами, даже находясь в меньшинстве, трегалозные липиды обеспечивали устойчивость мембраны к дегидратации. Вместе с коллегами из лаборатории Бертоцци мы пошли еще дальше: в частности, Дэвид Рабука создал синтетические липиды: их головка содержала трегалозу, а вот хвостовые цепочки были как у других, стандартных липидов. (У природных микобактериальных липидов гигантские гидрофобные хвосты. Можно было предположить, что их цепочки как-то по-особому переплетаются, и именно благодаря такой запутанности, а вовсе не трегалозе, консервируются мембраны.) Эти химерные молекулы спасали мембраны от обезвоживания не хуже микобактериальных липидов, что указывало на саму трегалозу как защитный фактор. Такой результат удовлетворил наших коллег, меня и мою зарождавшуюся исследовательскую группу9
.Очевидно, возбудители туберкулеза и лепры нашли хитрый и надежный способ сопротивляться стрессу, привязывая сахара к липидам и, разумеется, эксплуатируя самосборку липидов в мембраны для формирования своей поверхности. Можно ли сконструировать еще более устойчивые к иссушению слои, например с несколькими трегалозными остатками на молекулу липида, для решения проблемы хранения биоматериалов? Можно ли разрушать связанную с липидами трегалозу, чтобы бороться с туберкулезом? Не знаю, будущее покажет.