Если частица будет двигаться в четыре раза дольше, в среднем она будет проходить лишь вдвое большее расстояние. Чтобы переместиться в среднем в три раза дальше, ей нужно двигаться в девять раз дольше.
Помимо времени броуновское движение зависит и от размера частицы. Это логично: мы ведь утверждали, что беспорядочное движение имеет значение для микроскопических частиц, и нам отлично известно, что крупные тела вроде арбузов и мячей не катаются хаотично по полу ни с того ни с сего. Все частицы в среднем смещаются на расстояние, которое увеличивается пропорционально квадрату времени, но у мелких частиц это увеличение больше, чем у крупных. Все частицы получают одинаковый толчок от внешней тепловой энергии, но мелкие частицы реагируют на него сильнее.
Беспорядочное движение молекул в специфических контекстах еще называют
Броуновское движение не только подводит нас к очевидному заключению, что соли и сахара, липиды, белки и даже целые клетки постоянно пребывают в возбуждении, но и проливает свет на множество биологических процессов2
. Прежде всего, оно устраняет назойливую шероховатость в наших обсуждениях самосборки. Мы узнали, что белки сворачиваются в специфические трехмерные формы под влиянием физических взаимодействий собственных аминокислот. Кирпичики лего тоже специфически взаимодействуют друг с другом, однако груда кирпичиков сама по себе не собирается в какую-то форму. Броуновское движение объясняет, в чем здесь разница. В силу своего малого размера аминокислотная цепь постоянно пребывает в активном движении. Молекула непрестанно извивается, сближая то одни, то другие аминокислоты с третьими, пока не остановится на структуре с достаточной для фиксации силой взаимодействия. Примерно так же тепловая энергия вызывает беспорядочное движение липидов: они находят друг друга и выстраиваются в мембрану. Таким образом, в рецепт для самосборки входят не одни физические взаимодействия, а физические взаимодействия в сочетании с броуновским движением.Экспрессия и регуляция генов тоже зависят от броуновского движения. Мы описали, как факторы транскрипции связываются с ДНК, но обошли вниманием вопрос о том, как они находят свои последовательности-мишени. Не существует ни направляющей руки, ни рельсов, которые доставляли бы их прямиком к пункту назначения. Подгоняемые тепловой энергией, белки блуждают по пространству клетки, сталкиваясь со всевозможными участками ДНК и задерживась лишь на тех, которые они специфически распознают. Как и самосборка, эта стратегия управления не сработает с макроскопическим телом: я не могу положить на пол ключ от своего кабинета и надеяться, что он сам как-то попадет в дверной замок, – но в микроскопическом мире она очень успешна.
Броуновское движение проливает свет даже на глубокую связь строения и времени. В качестве примера рассмотрим взаимодействие двух нейронов.
Нейроны могут вступать в два типа контактов. При образовании контакта первого типа,
Существует множество нейромедиаторов и множество веществ, включая фармпрепараты, которые управляют их высвобождением, обратным захватом и разложением. Например, никотин и некоторые препараты для лечения болезни Альцгеймера повышают уровень ацетилхолина. Другой нейромедиатор, аденозин, снижает активность мозга, вызывая сонливость, а кофеин блокирует рецептор аденозина, тем самым мешая вам заснуть. Как же нейроны отправляют и получают медиаторы по химическому синапсу? Им достаточно лишь высвободить эти вещества в синаптическую щель и позволить им распространяться путем диффузии. Молекулы свободно блуждают по зазору и когда случайно натыкаются на рецепторы клетки-мишени, связываются с ними и запускают соответствующий нейронный ответ. То есть здесь не нужны никакие специальные механизмы – ни наномерный перевозчик, ни толкающие электромагнитные силы. Молекулы нейромедиаторов очень малы – их размеры колеблются в районе нанометра, – и мощное броуновское движение переносит их на пару десятков нанометров за какую-нибудь микросекунду.