Зависимость экспрессии генов от концентрации регуляторов может порождать удивительно замысловатые паттерны распределения их продуктов. Давайте рассмотрим упрощенный пример, а затем и реальность. Представьте эмбрион в форме удлиненной пилюли. Пока все соответствует действительности: на ранних стадиях развития почти все организмы представляют собой шары или эллипсоиды – поначалу все мы пузыревидны. Допустим, источник морфогенов находится в левой части эмбриона и сформирован из особых клеток или материалов, предоставленных матерью. Морфоген А распространяется путем диффузии и формирует градиент концентрации, которая постепенно снижается к другому полюсу эмбриона (левое изображение в верхнем ряду). Если отклик на морфоген А осуществляется переключением – ген включается, когда А много, и выключается, когда А мало, – профиль производства продукта этого гена будет ступенчатым (верхний ряд, справа).
Теперь допустим, что в той же области образуется и морфоген B. Возможно, из-за большего размера его молекулы случайные блуждания B не столь интенсивны, следовательно, градиент его концентрации компактнее, резче и зона того же переключательного отклика ограничена меньшим пространством (средний ряд).
Как вы помните из четвертой главы, клетки могут создавать из генов схемы, отклик которых зависит от входящих сигналов. Следовательно, схема, которая включается, когда A много, а B мало, и выключается при любой другой комбинации, даст профиль экспрессии в форме полосы, чуть смещенной влево от центра. Схема, чувствительная к комбинации «мало А и мало B», откликнется лишь в правой половине эмбриона (нижний ряд).
Градиенты концентраций всего двух факторов транскрипции могут породить более двух пространственных паттернов генной экспрессии. Активированный ген может кодировать белок, ответственный за онтогенетический процесс со строго определенным «адресом», либо другой фактор транскрипции, способный взаимодействовать с первыми двумя. Допустим, фактор C управляется схемой «много А и мало B» и распространяется путем диффузии (см. следующий рисунок). Тогда схема «много C и мало A» будет активна в узкой полосе сразу за правой границей области синтеза C – там, где А уже мало, а диффундирующего C еще достаточно, чтобы считать его концентрацию высокой.
Узкая полоса иллюстрирует точность организации, обеспечиваемую небольшим числом морфогенов. Когда факторов транскрипции с характерными для них градиентами становится больше, спектр возможностей резко расширяется. Несложно представить, как можно задать специфические паттерны экспрессии генов, точно соответствующие назначению клеток, из которых формируются те или иные органы и ткани.
В теории это кажется убедительным, и организмы действительно применяют этот подход на практике. Процесс формирования паттернов мы уже несколько десятилетий приблизительно представляем и наблюдаем размытие концентраций факторов транскрипции и соответствующее профилирование экспрессии генов. В последние годы удается детальнее изучать эти процессы у все большего спектра организмов и с возрастающим числом вовлеченных генов. Лучше всего мы разбираемся в пространственной организации эмбрионов дрозофил, которых изначально исследовали уже знакомые нам Нюслайн-Фольхард и Вишаус. На ранних стадиях развития – задолго до появления ног, крыльев и даже головы – эмбрион мушки представляет собой тот самый удлиненный эллипс, что мы изображали чуть выше. У одного из полюсов внутри своей яйцеклетки (условно переднего, головного) мушка-мать оставляет наследство в виде мРНК, благодаря трансляции которой в зиготе создается стартовый градиент фактора транскрипции Bicoid, подобный градиенту нашего гипотетического морфогена B. Этот градиент задает передне-заднюю ось формирующегося тела. Bicoid связывается с промотором гена
Паттерны экспрессии