Возьмем для примера ген
Кодируемые этими генами белки удивительно похожи друг на друга. Я изобразил строение одного из участков белка Hedgehog плодовой мушки (слева) и белка Sonic hedgehog человека (справа)4
. Оба организованы идентично как пара лежащих под углом спиралей и несколько коротких листов, связанных всевозможными петлями.Отличить мушку от человека легко, а вот различить их белки семейства Hedgehog очень сложно. Сходство очевидно даже в последовательностях аминокислот. Просто посмотрите на фрагменты из 46 аминокислот – это примерно треть белкового участка с предыдущего рисунка. Я использую здесь устоявшиеся однобуквенные обозначения аминокислот и жирным выделю те, что идентичны у двух белков.
Плодовая мушка:
RCKEKLNVLAYSVMNEWPGIRLLVTESWDEDYHHGQESLHYEGRAV
Человек:
RCKDKLNALAISVMNQWPGVKLRVTEGWDEDGHHSEESLHYEGRAV
Сходство последовательностей столь же поразительно, как и сходство пространственной организации. В целом у мушиного Hedgehog и человеческого Sonic hedgehog около 70 % идентичных аминокислот, но даже различия в оставшихся 30 % не так сильны, как может показаться. В приведенных выше цепочках первое различие – это E (глутаминовая кислота) в белке дрозофилы и D (аспарагиновая кислота) в человеческом, обе они заряжены отрицательно. Далее не совпадают V и A (валин и аланин), но оба они гидрофобны. Пусть аминокислоты и различаются молекулярными компонентами, их физические характеристики во многих случаях схожи. Бережливость природы многократно усиливает эффективность изучения ее инструментов: мы можем вполне обоснованно утверждать, что белок Hedgehog у плодовых мушек ведет себя примерно так же, как Sonic hedgehog у людей и Desert hedgehog у эфиопских ежей.
Разные органы развиваются в разных местах. Крылья – в районе среднеспинки комара, а усики (антенны) – на голове. Ваши пальцы вырастают на дальнем конце ладони, а не у запястья. Можно предположить, что лишь специальные крыльеформирующие клетки мигрируют в зону формирования крыльев в средней части развивающегося насекомого и остаются в ней – иными словами, что судьба клеток определена еще до их миграции. А можно представить и другое: что клетки по всему телу способны к формированию крыльев, но лишь те, которые оказываются в нужном месте, получают сигнал к этому. Оказывается, природа применяет обе тактики. Вторая, в которой судьба клетки решается в зависимости от ее расположения в пространстве, распространена на удивление широко и обеспечивает эффективное кодирование инструкций для развивающегося организма.
О существовании пространственных сигналов известно больше века. В экспериментах вроде тех, что Дриш проводил с эмбрионами морских ежей и других животных, где клетки намеренно меняли местами или некоторые из них пересаживали в иную часть тела другой особи, развитие часто даже не нарушалось, словно перемещенные клетки знали свои новые эмбриональные адреса и вели себя сообразно им. Изучать эту едва ли не волшебную сенсорную способность, а также природу и значимость пространственных сигналов начали позже и продолжают до сих пор. Основа феномена, однако, проста и сочетает два уже знакомых нам биофизических механизма – диффузию и регуляторные сети.