Читаем Простое начало. Как четыре закона физики формируют живой мир полностью

7 августа 1963 года у президента США Джона Кеннеди и первой леди Жаклин Кеннеди на пять с половиной недель раньше срока родился сын Патрик Бувье. Два дня он боролся за жизнь, пытаяясь дышать, но не справился. Эта трагедия опечалила миллионы людей, но, хотя статус президентского сына и делал этого ребенка особенным, причина его смерти оказалась пугающе распространенной. Патрика убил респираторный дистресс-синдром новорожденных (РДСН). Это главная причина смерти недоношенных младенцев, и связана она с проблемой поверхностей4.

При каждом вдохе вы тратите немало сил на наполнение легких воздухом. Легкие часто изображают как эластичные мешки, подобные воздушным шарикам и растягиваемые мышцами. Но ваши легкие не просто шарики, а влажные шарики. Клетки, выстилающие каждый из сотен миллионов крошечных альвеолярных мешочков, составляющих ваши легкие, покрывают себя тонким слоем жидкости (на рисунке это темный слой внутри альвеолы)5. При вдохе эластичная ткань растягивается, увеличивая площадь поверхности жидкости, то есть площадь ее взаимодействия с вдыхаемым воздухом. Однако жидкость, как всегда, «хочет», чтобы эта площадь оставалась минимальной, и потому противостоит ее увеличению.



И растяжение легочной ткани, и расширение ее жидкой пленки требуют усилий – и энергия на оба процесса тратится примерно одинаковая. Чтобы измерить это, можно накачать свежевскрытые легкие воздухом или водой. При наполнении водой не возникает интерфейса вода – воздух, а значит, и поверхностного натяжения, потому энергия расходуется исключительно на работу по растяжению ткани. При наполнении воздухом мы растягиваем ткань и увеличиваем площадь контакта воды и воздуха, на что уходит примерно вдвое больше энергии, чем при наполнении легких водой. Иными словами, около половины энергии, необходимой для дыхания, тратится на поверхностное натяжение. И это, в общем-то, неудивительно: как мы отмечали, площадь поверхности наших легких огромна.

Дыхание обходится нам дорого, но его цена возрасла бы еще, будь легочная выстилка покрыта чистой водой. Все жидкости натягиваются, но одни натягиваются сильнее, чем другие. У воды одно из самых сильных поверхностных натяжений среди распространенных жидкостей: оно примерно вдвое выше, чем у масел и спиртов, что связано с большой силой притяжения между ее молекулами. Мы можем снизить поверхностное натяжение воды, добавив в нее немного мыла. Чтобы продемонстрировать это, вернемся к скрепке, которую мы положили на поверхность воды несколько страниц назад: если добавить в воду хоть каплю жидкости для мытья посуды, скрепка утонет, поскольку сила натяжения мыльной поверхности не справится с ее весом. Этот эффект объясняется молекулярной структурой мыла. Мы помним из главы 5, что у каждой молекулы мыла, как и у липида, один конец гидрофобный, другой – гидрофильный. Следовательно, молекулы мыла охотно распределяются по поверхности воды гидрофобными хвостами в воздух. В результате поверхность перестает быть местом, которого молекулы воды стремятся избегать, и больше не требует высоких энергетических затрат. Соответственно, поверхностное натяжение сильно снижается.

В легких природа хитроумно снижает цену их расширения, тоже добавляя мыла. Выделения клеток легочной выстилки по-научному называются легочными сурфактантами[46], но термин «мыло» нагляднее описывает эти преимущественно липидные вещества. И снова мы сталкиваемся с примером самосборки: не получая никаких инструкций извне, выделяемые молекулы мыла выстраиваются на границе жидкости и воздуха и формируют слой, помогающий работать целому органу.

Критически важная способность снижать поверхностное натяжение в легких появляется у вас далеко не сразу после зачатия: легочные сурфактанты начинают вырабатываться на поздних стадиях эмбриогенеза. Когда недоношенные дети появляются на свет, у них – в зависимости от того, насколько раньше срока это случается, – сурфактантов либо мало, либо нет вовсе, и такие новорожденные дышат с трудом или совсем не могут дышать, поскольку их мышцам тяжело преодолевать поверхностное натяжение.

Патрик Кеннеди, конечно, не был единственным, кто в то время умер от респираторного дистресс-синдрома новорожденных. В одних только США в 1960-е РДСН уносил по 25 тысяч жизней в год. Но к 2005 году показатель ежегодной смертности от этого синдрома упал ниже 900. РДСН возникает, как и прежде, но теперь мы знаем, как с ним бороться: в легкие младенца нужно впрыскивать мыло. На самом деле это, разумеется, легочный сурфактант – либо полученный от животных, либо синтезированный в лаборатории, – но это не умаляет поразительной простоты и эффективности лечения, замешенного не на зубодробительной биохимии или генетике, а на физике дыхания. В основе этой простоты лежит самосборка: молекулы сурфактанта сами занимают нужные места в двухмерном интерфейсе воздух – жидкость. Ну а знания о поверхностном натяжении спасают жизни.


Перейти на страницу:

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука